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Introduction

“In spite of the accumulation of detailed knowledge, how the
human brain works is still profoundly mysterious.”

— Francis Crick

After deconstructing cognitive functions into simple structures and opera-
tions, we will utilize them as material in rebuilding complex mental capabil-
ities as conceptual machines.

I refer to this process of reverse and re-engineering the mind as Cognitive
Mechanics.

1



2 INTRODUCTION

Summary
If the mind were a machine, what would its components be? How would they
interact? And can we reassemble these components into new machines with
intelligent capabilities? This book attempts to build a framework to address
these questions.

We can only expect this method of inquiry to take us so far; but I’ve found
some surprise at the distance the mechanical approach has drawn me to this
point.

The methods, structures, and general framework of this book come—in
whole or in part—from a significant body of material I’ve gathered from
others. I owe a great debt to the scientists, mathematicians, and engineers
who built the many disciplines I put to use.

Outline
The basic trajectory of this book takes the following form, omitting a few
interesting chapters that provide broader context and applications:

1. We describe states of the mind as hierarchical conceptual structures;
2. Based on our own experienced cognitive abilities, we propose a small

set of fundamental operations on those structures;
3. We outline a method, termed stratified analysis, for expressing con-

ceptual operations in terms of some lower-level (ostensibly physical)
representation and vice versa;

4. We show that combinations of those simple operations can form into
complex mechanisms by a process that essentially amounts to forming
sets of conditionally-applied structural transformation rules;

5. We demonstrate a handful of specific machines that represent arith-
metical hyperoperations (e.g. addition, multiplication, etc.);

6. We build a universal conceptual machine—a conceptual machine that
can emulate any other conceptual machine—which gives us the ability
to represent mechanisms as conceptual structures;

7. We define an operation that can gather similarities between conceptual
structures;

8. We plausibly allude to how we might use that operation to extract
the common states of arithmetical machines, formulated as conceptual
structures to be evaluated by the universal machine;

9. Finally, we use those common structures to build a machine that can
construct new machines to execute arbitrary hyperoperations.

This course illuminates a method for building machines that can learn from
and generalize other machines. The book concludes with a sketch of such
an “intelligent” machine, and sets in place a program to obtain that goal.
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Computer Simulations
In the course of writing this book, I created a programming framework for
simulating the conceptual structures and machines that are described within.

These simulations were a useful tool in debugging and verifying that the ma-
chines I wrote into the book actually worked. I expect to put them to further
use in experiments related to language, learning, perceptual representations,
and more.

To view the code or contribute, you can visit us on GitHub at
https://github.com/CognitiveMechanics.

Visit Us Online
For up-to-date Cognitive Mechanics news and free articles, visit us online at
https://www.CognitiveMechanics.org.



4 INTRODUCTION

Syntax Reference
Below is a reference for the syntax used in the formal descriptions in this
work. These are derived largely from formal logic and set theory, with a few
unique forms specific to our system:

Syntax Read As Description

𝑎 “Concept a” Lowercase Latin letters are
variables that represent
concepts

𝛼 “Perception alpha” Lowercase Greek letters are
used to represent perceptions

“thing” “The word thing” Words surrounded by quotes
are sometimes used to represent
the word itself, or the visual or
auditory perception depicted by
the word, as opposed to its
actual meaning

‹thing› “Perception of thing” Words surrounded by single
angle quotes are perceptions
represented by the words

«thing» “Concept of thing” Words surrounded by double
angle quotes are concepts
represented by the words

⟨𝑎, 𝑏⟩ “Concept of
composed of a and b”

The concept composed of 𝑎 and
𝑏, via operation 𝐶 (defined in
detail in §2.2.6)

[thing] “Component class
thing”

Words surrounded by square
brackets are component classes
(defined in detail in §8.2.1)

𝑂(𝑎, 𝑏) → 𝑐 “Operation O of a
and b yields c”

Uppercase Latin letters followed
by parenthesized arguments
represent cognitive operations;
see §2 for their full semantics

𝑂(𝑎 ∣ 𝑏) → 𝑐 “Operation O of a
with respect to b
yields c”

The ∣ indicates an operation on
𝑎, with reference to 𝑏

𝐴 ⇒ 𝐵 “A implies B” Logical implication; 𝐴 implies
𝐵; if 𝐴 therefore 𝐵
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Syntax Read As Description

𝐴 ⇔ 𝐵 “A means the same
thing as B”

Mutual implication; 𝐴 implies
𝐵 and vice versa; 𝐴 if and only
if 𝐵

Ω(𝑎, 𝑏) “Predicate Omega of
a and b”

Uppercase Greek letters
followed by parenthesis indicate
some relationship or property of
their arguments; they have the
values true or false

𝜎(𝑎, 𝑏) “Specifier sigma of a
and b”

Lowercase Greek letters
followed by parenthesis indicate
a concept which has properties
of its arguments; their
semantics will always be defined
before use

𝑎 ∶ Ω(𝑎), Π(𝑎) “a such that Omega
a, Pi a”

𝑎 has the properties Σ and Π

𝑎 ∧ 𝑏 “a and b” Logical and

𝑎 ∨ 𝑏 “a or b” Logical or (inclusive)

¬𝑎 “not a” Logical not

𝑎 ≡ 𝑏 “a is defined as b” Used to define terms

{𝑎, 𝑏} “Set of a and b” Sets are used in their set theory
sense, an unordered collection
of objects uniquely identifed by
their specific set of members;
sets can have any number of
members

𝑆 “Set S” Uppercase Latin letters,
particularly 𝑆 are used as
variables for sets

{𝑎𝑆0
, 𝑏𝑆1

} “A set indexed by S” Indexed sets use another set to
reference their members. In the
above example 𝑎 is indexed by
the zeroth element of set 𝑆 and
𝑏 is indexed by 𝑆1, etc.

{𝑣(𝑠)}𝑠∈𝑆 “A set indexed by s
in S”

Another set indexed by 𝑆; the
value 𝑣(𝑠) is given each element
𝑠 in 𝑆 to build the set
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Syntax Read As Description

{} “empty set” The set with no members

∅ “null concept” A concept that represents no
result from operation 𝑋

𝑥 ∈ 𝑌 “x in Y” Indicates that 𝑥 is a member of
set 𝑌

𝑥 ∉ 𝑌 “x not in Y” Indicates that 𝑥 is not a
member of set 𝑌

∃𝑥Ω(𝑥) “there exists x where
Omega x”

Used to indicate existence of an
x that satisfies Omega

∀𝑥 “for all x” States that the following
applies to all 𝑥

𝐴 ⊆ 𝐵 “A is a subset of B” Each element of set 𝐴 exists in
set 𝐵: ∀𝑥, 𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵

𝐴 ∪ 𝐵 “union of A and B” The set that contains all
members of 𝐴 and 𝐵

𝐴 ∩ 𝐵 “intersection of A
and B”

The set that contains all
members of both 𝐴 and 𝐵

𝐴 × 𝐵 “Cartesian product
of A and B”

A set of pairs {(𝑎, 𝑏)}∀𝑎∈𝐴,∀𝑏∈𝐵;
every combination of the
elements of 𝐴 and 𝐵

𝒫(𝐴) “powerset of A” The set of all potential subsets
of A, including the empty set

𝐴 \ 𝐵 “difference of A and
B”

The set that contains all
members of 𝐴 that are not in 𝐵

⊤ “true” True

⊥ “false” False

Note first that operations, denoted by →, are distinguished from logical im-
plication, denoted by ⇒, in that operations are processes that occur in time,
whereas logical implication is an unqualified statement about the conditions
preceding and succeeding the arrow. A full explanation of their semantics
and usage will be outlined in §2.

Note also that “thing” is distinguished from ‹thing› in that “thing” is used to
mean the actual visual characters or auditory phonemes of the word “thing,”
‹thing› might be used to indicate that you see a thing.
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Index of Defined Symbols
Throughout the work we will define a number of operations, predicates, func-
tions, quantifiers, and specifiers, listed below:

Symbol Name Defined Description

𝐶({𝑎, …}) → 𝑏 Construct or
Compose

§2.2.6 Creates a new concept

𝐸(𝑎) → {𝑏, …} Enumerate §2.2.7 Enumerates a concept’s
components

𝐺({𝛼, …}) → 𝑏 Generalize §7.2.3 Generalizes a concept from
a set of mental entities

𝐼(𝑎) → 𝑏 Interpret §5.4.2 Interprets a perception
into a concept

𝐾({𝛼, …}) Collect §6.2.2 The concept or perception
that is manifested in a set
of correlates

𝐿(𝑎 ∣ 𝑏) → 𝑎′ Learn §10.2.2 Learns by associating one
concept with another

𝑀(𝛼) Manifest §6.2.1 The set of correlates that is
equivalent to a concept

ℳ Machine §12.2.18 A set of conceptual
structures that acts as an
automaton

𝑄(𝑎) Productivity §3.2.2 Productivity of a concept

𝑅(𝑎) → 𝑏 Recount §2.4.12 Recounts related concepts

𝑆(𝑎) → 𝑏 Symbolize §17.1.7 Symbolizes a concept
linguistically

𝑇 (𝑎, 𝑟, 𝑏) → 𝑎′ Transclude §8.5.4 Substitutes one concept
into another

𝑈(𝑠, 𝑐) → 𝑟 Universal §19.12.2 Executes a set of
configurations 𝑐 on state 𝑠
to yield result 𝑟

𝑋(𝑎, 𝑟) → 𝑏 Extract §8.6.2 Extracts a concept from
another

𝑊({𝑎, …}) → 𝑏 Withdraw §20.2.1 Withdraws an abstraction
from a set of concepts
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Symbol Name Defined Description

𝑌 (𝑎, 𝑟) → 𝑏 Match §8.4.12 Yields a truth value for
whether one concept
matches the structure of
another

ℎ𝑥 h-level §3.2.6 Used for
partial-quantification of
productivity values

Υ(𝑎, 𝑏) Upsilon §8.4.4 Indicates that one concept
matches another

Υ∗(𝑎|𝑏) Upsilon-Star §20.1.28 Returns a numerical metric
of the information
difference between concepts

Φ(𝑎, 𝑏) Relation or Phi §2.4.4 Indicates a relation
between two concepts

Φ′({𝑎, 𝑏}) Phi-Prime §2.4.7 Indicates a set of relations
between a set of concepts

Φ∗(𝑏 ∣ 𝑎) Phi-Star §7.4.11 Gives the probability of
transition from one state
to another

𝜎(𝑎, 𝑏) Sigma or
Sigma Specifier

§12.2.3 A specifier that constructs
a machine state

𝜅(𝑎) Kappa or
Key Specifier

§11.5.4 A specifier that indicates a
concept is being used as a
key

𝜖(𝑠, 𝑜) Epsilon or
Eval Specifier

§19.5.1 A specifier that indicates
an operation to be
evaluated within a
universal conceptual
machine

𝜌(𝑎) Rho or
Ref Specifier

§19.4.2 A specifier that indicates a
ref in a universal
conceptual machine

[ ] Proxy §8.2.8 A placeholder concept
which matches any concept

[⋅] Dot proxy §8.4.7 A concept which matches
exactly the proxy only
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Index of Defined Terms
Below are listed the meaning and locations of defined terms:

Term Defined Definition

Abstraction §1.4.1 Any construction that can represent
multiple things as a single thing

Aspect §1.1.4 A subjective property of a concept

Communication §17.5.1 The replication of aspects of a conceptual
structure from one mind to another

Component §1.1.5 A concept from which another concept is
constructed

Component Class §8.2.1 A concept that serves as a template for
some other concept which can be
substituted for it

Concept §1.1.1 A mental entity that can be recalled and
manipulated

Correlate §4.1.2 A counterpart of a mental state in the
world

Counter-Productive §3.3.6 The usage of language or concepts that
actively work against productivity

Domain §2.3.1 The set of potential roles of a concept

Experience §5.3.2 The set of a mind’s perceptions in a given
state

Fully-Quantified §3.2.7 The property of a productivity value that
it is entirely numeric

Grammar §17.1.2 The rules for how symbols in a language
are combined

Internal Language §17.6.2 Private language usage internal to the
mind

Key §11.5.4 A concept that is used specifically as a
target for the operations 𝑋 or 𝑇

Non-Productive §3.3.1 The property of a concept that it is
neither productive nor
counter-productive; that it has no use

Operation §2.1.1 A process of the mind or world
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Term Defined Definition

Partially-Quantified §3.2.7 The property of a given productivity
value that its denominator is an h-level

Perception §5.1.2 A specific sensation as made available to
the conceptual system

Primitive Concept §7.1.1 A concept whose only component is itself

Productivity §3.2.2 The utility of a concept

Ref §19.4.2 A concept used in a universal machine
that refers to the current emulated
machine state

Related Concept §2.4.1 A concept that may arise as a
consequence of another

Tag §8.2.8 The semantic concept in a component
class

Universal
Conceptual Machine

§19.1 A conceptual machine that can emulate
any other conceptual machine



1 Concepts

“It seems that the human mind has first to construct forms
independently before we can find them in things.”

— Albert Einstein

The words I write here (and you read) have some form of life within them,
deeper than the shapes of the letters on the page, or the sounds they evoke in
our minds. We begin our exploration by examining concepts—the structures
that lie beneath the words.

11
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1.1 The Constituents of Meaning
1.1.1 – Most words function as labels that we assign to mental constructions.
The label is the word. The mental construction is the concept.

1.1.2 – Concepts are the constituents of meaning.

1.1.3 – Let’s take the concept «table». When I think about what a «table» is,
I have images in my mind of different tables. I think about common features
of tables, such as legs and tabletops. I think about words that describe a
table. “A piece of furniture with a raised platform.” I think about what a
table is used for, as for writing or eating. I think about how the table I sit
at now feels against my forearms, and the sound it might make if I were to
knock on it.

1.1.4 – These thoughts are all aspects of my concept «table». My concept
«table» is a generalization of all of those things.

1.1.5 – One type of conceptual aspect is a component. Concepts are composed
of their components.

1.1.6 – The components of concepts are also concepts. A concept is either
composed of other concepts, or it is composed only of itself.

1.1.7 – Not all concepts can be described with a single word. This is often
the case due only to the occasional inadequacy of our vocabulary.

1.1.8 – For any clearly held concept, we can always invent a new word to
serve as its label.

1.1.9 – Notice that although I think of the concept «table» as unitary, there
are many concepts which make it up.

1.1.10 – There are also many possible instances of the concept «table». And
it may be that there is no single quality that every thing I would describe
as a “table” possesses.

1.1.11 – For example, almost all tables have legs. But some desks do not
have legs, and have extended vertical surfaces that support them instead.
My concept of «desk» is positively a type of «table».

1.1.12 – Concepts are not the same as any thing in the world. The concept
of a table involves a group of other concepts. But no concept in that group,
nor the group itself, maps perfectly to any «table» that actually exists some-
where.

1.1.13 – No concept is a perfect proxy to reality. Concepts are better seen
in terms of analogy.

1.1.14 – My concept «black» is to the concept «table» in «black table»
something like the stuff that makes up what I call the “table” is to the
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physical property of reflecting a minimal amount of light in the wavelengths
visible to humans, i.e. what I call “black.”

1.1.15 – Concepts are not only of objects. Concepts can be of actions, rela-
tionships, transformations, and properties, and of their combinations.

1.1.16 – «black» is a concept. «table» is a concept. «the black table» is a
concept. «falling over» is a concept. «the black table fell over» is a concept.

1.2 Understanding
1.2.1 – My concept «table» is unique to me, but I operate with the idea that
your concept «table»—though slightly different from my own—is similar
enough that when I put the word “table” into use, I expect that we will
converge on the same understanding.

1.2.2 – That understanding is embodied in the structure of the concept: in
its components as well as its relationships to other concepts.

1.2.3 – Not just between people, but even in the same person at a different
time, the experienced representation of a concept will be slightly different
the next time it is recalled. For example, maybe next time the recalled
«table» is a mahogany color instead of oak.

1.3 Lost Words
1.3.1 – When we are searching for a word, we know it’s “there,” but we can’t
find the right label. We grasp aspects of a specific concept that is related to
the word, but not the word itself.

1.3.2 – Other words with similar meanings, or aspects of their meanings,
go through your head. “It’s like baseball, but British… And they play it in
India… They have this thing called a wicket… I think it sounds like wicket…”

1.3.3 – Eventually, it comes to you: “Ah, cricket…”

1.3.4 – You know there’s something there—are certain of it—and you can
tell someone aspects of it; but you cannot think of one specific aspect of it.
That aspect is the linguistic label for it—a word.

1.3.5 – This shows that there must be something like what we call a concept,
which is not the same as the word or its other associated aspects. They are
present in the mind and can be retrieved via other concepts that they are
related to, even when the symbol (i.e. the word) is not available.

1.3.6 – The concept «cricket» is not one thing; it is a relationship between a
number of different concepts: concepts of the «pitch», the «ball», the «pad-



14 1 CONCEPTS

dle», the «players». We will see later, every concept’s relations ultimately
tie back to primitive concepts—and ultimately, to perceptions.

1.4 Abstractions
1.4.1 – An abstraction is a construction which models multiple things, or
aspects of things, as a single thing. The single thing is the abstraction.

1.4.2 – All concepts are abstractions.

1.4.3 – Concepts are idealized and abstract forms. Even when I look at
a specific table, the one in front of me, the concept in my mind of this
particular table is not the same as the table itself.

1.4.4 – I do not have a perfect picture of every molecule that I deem to be
part of the «table», or which are right next to the table but I consider part
of the «air». I do not have a picture of exactly what the legs look like, or
the pattern of the wood—just close enough that I could pick it out under
many circumstances, if I were to perceive it again.

1.4.5 – In forming concepts, our minds “smooth out” and simplify the actual
state of affairs in the world. We discard information and distill down a set
of related mental entities into a single concept.

1.4.6 – The resulting concept does not have a one-to-one mapping to any
feature or set of features within the world.

1.4.7 – Let’s consider the concept «hill». I have seen many «hills» of various
shapes and sizes. When we use the concept «hill», we are not referring
to one thing, but to a set of examples, relations, and properties (i.e. other
concepts), which all or some «hills» have in common.

1.4.8 – But that is not the only way in which a concept is an abstraction.
Concepts are also abstractions in the sense that when we derive the concept
from aspects of the world known to us through our senses, we take what are
actually separate aspects of the world and refer to them as a single entity.

1.4.9 – This is the essence of our capability of object discrimination. We
perceive objects—abstractions of sensations. Then we form them into
concepts—abstractions of perceptions. In this way, conceptualization is a
meta-version of our ability for object discrimination.

1.4.10 – Take as an example the tall grass on one side of the «hill», and the
uprooted tree on the other. When we say “that hill” we are referring to many
aspects of the «hill»—many of which are not even known specifically—and
yet are contained in our concept «that hill».

1.4.11 – Suppose I am standing on the south side of a hill, and you show me
a tree on the north side that I did not previously know was there. If you
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ask me: “Is this tree a part of the hill?” I will say: “Yes”—with no doubt
in my mind that it is a part of my conceived «hill».

1.4.12 – «that hill» may drastically change over time, but it still retains its
conceptualization as «that hill».

1.4.13 – From one season to another, «that hill» may become nearly unrec-
ognizable, but it is still «that hill».

1.4.14 – We experience the world, and our own mind determines subcon-
sciously what its objects will be. We perceive those objects, and our mind
determines, consciously or subconsciously, what its concepts will be.

1.4.15 – Suppose I say, “That thing over there is a ‘cabinet.’ ” I am either
making a statement about what my concept «cabinet» is, or I expect the
recipient must first have some idea about what my concept «cabinet» might
be to understand what I say.

1.4.16 – This shows that the “is-a” relationship—the relationship between
aspects of the world and our concepts of them—is not a property of the
world. It is an application of the mind.
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2 Operations

“What a peculiar privilege has this little agitation of the brain
which we call ‘thought.’ ”

— David Hume

With our notion of concepts in place, we can now put them to use. In this
chapter, we define the basic cognitive operations on concepts, and estab-
lish the foundation for the structures and formal descriptions we develop
throughout our exploration.

17
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2.1 Definition & Semantics
2.1.1 – An operation represents a process of the mind or of the world. It
exists temporally extended: it occurs over time.

2.1.2 – An operation takes a set of mental entities (e.g. concepts) and pro-
duces a new set of mental entities; the inputs and outputs of operations are
mental entities.

2.1.3 – We use uppercase Latin letters to represent operations, and lowercase
Latin letters to represent concepts.

2.1.4 – The operation 𝑂 below is said to take 𝑎 and 𝑏 as arguments, and to
yield its product 𝑐:

𝑂(𝑎, 𝑏) → 𝑐

2.1.5 – This operation is defined as a process which may occur if given 𝑎
and 𝑏, but it is not required to occur any time 𝑎 and 𝑏 are given.

2.1.6 – Operations can be chained together in sequence when the output of
one provides the input of another.

2.1.7 – For example, when:

𝑂1(𝑎) → 𝑏

𝑂2(𝑏) → 𝑐

2.1.8 – Transitively, this implies:

𝑂1(𝑎) → 𝑐

2.1.9 – We may define anonymous operations:

(𝑎, 𝑏) → 𝑐

2.1.10 – Most simply, a conversion from 𝑎 to 𝑏:

𝑎 → 𝑏
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2.1.11 – All named operations are broadly speaking identical to their anony-
mous counterpart, when all constraints are taken into account. At the con-
ceptual level of description, they give the exact same results.1

𝑂(𝑎, 𝑏) → 𝑐 ≡ (𝑎, 𝑏) → 𝑐

2.1.12 – Once an operation is defined, we are able to substitute its yielded
product anywhere the operation occurs in our descriptions.

2.1.13 – For example, if we are given:

𝑂1(𝑎, 𝑏) → 𝑐

2.1.14 – 𝑐 can be substituted for 𝑂1(𝑎, 𝑏) in the expression 𝑂2(𝑂1(𝑎, 𝑏)) to
yield 𝑂2(𝑐):

𝑂2(𝑂1(𝑎, 𝑏)) → 𝑂2(𝑐)

2.1.15 – But the inverse is not allowed; you cannot substitute 𝑂1(𝑎, 𝑏) for 𝑐:

𝑂3(𝑐) ↛ 𝑂3(𝑂1(𝑎, 𝑏))

2.1.16 – Finally, any set may undergo a conversion to yield any of its mem-
bers:

{𝑎, …} → 𝑎

2.1.17 – Or any subset of its members:

{𝑎, 𝑏, 𝑐} → {𝑎, 𝑏}

1Usually, a named operation also has a separate description at the level of the manifestations,
which in many cases may mean that while two operations have identical signatures at the
conceptual level, they operate differently at this lower level. This will be explained in greater
detail in §6.
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Figure 1: Construction: Concept 𝑑 is constructed from its component con-
cepts 𝑎, 𝑏, and 𝑐.

Figure 2: Construction Illustrated: The «black rectangle» is constructed
from «black» and «rectangle».

Figure 3: Enumeration: When concept 𝑑 is enumerated, the operation yields
its component concepts 𝑎, 𝑏, and 𝑐.
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2.2 Construction & Enumeration
2.2.1 – When the Indigenous Americans of the Great Plains first encountered
horses they referred to them as “big dogs.”2

2.2.2 – The natives found them easy to domesticate, as they did their dogs—
and accordingly used them for tasks similar to those dogs traditionally
served, such as for modes of transport for their supplies when they peri-
odically moved their settlements.3

2.2.3 – But though the horses shared aspects with their concept «dog», the
Natives knew they were not dogs.

2.2.4 – They developed a concept of a «horse» before they had a specific
word with which to converse about them. And in many cases, that word
remained the equivalent of “big dog.” Their concept was constructed as a
composition of aspects of their concept «dog», with additional concepts—
including «big».

2.2.5 – This is an important feature of concepts. They can undergo an oper-
ation to combine one or more component concepts to form a new concept.

2.2.6 – Below we define an operation 𝐶 (construct or compose—used inter-
changeably), which takes a set of one or more concepts {𝑎, ...} and yields a
new concept 𝑏.

𝐶({𝑎, ...}) → 𝑏

2.2.7 – The inverse of 𝐶 is the operation 𝐸 (as in enumerate).

2.2.8 – 𝐸 takes the same concept 𝑏 and yields its set of components {𝑎, ...}.

𝐸(𝑏) → {𝑎, ...}

2.2.9 – Our capability to perform these operations is available to us subjec-
tively.

2.2.10 – We can construct new concepts without having any new experience
or perception.

2See Brown (1999), p29.
3Interestingly, the natives encountered feral horses, which arrived some years ahead of the

European settlers traveling Westward—likely from whom the animals had escaped: see Haines
(1928), p112.
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2.3 Domain
2.3.1 – Concepts that have different roles can be constructed. For example,
I can picture a «blue pentagon».

2.3.2 – The «blue pentagon» shares aspects with my concept «blue» and
with my concept «pentagon».

2.3.3 – I am able to do this even if I have never seen or pictured a «blue
pentagon» before.

2.3.4 – We are able to do this because «blue» and «pentagon» have no
conflicting properties—one holding the role of the «color» and the other
holding the role of the «shape».

2.3.5 – We call this “role,” the set of potential usages of a concept, its
domain.

2.4 Relations & Recountation
2.4.1 – Another type of conceptual aspect is a relation or a related concept.

2.4.2 – We know from our own experience that when we bring to mind one
concept, it can readily bring our minds to other related concepts.

2.4.3 – When I think of «wood», I naturally think next of «trees», «acorns»,
«squirrels», «chirping», etc.

2.4.4 – We use Φ to indicate a relation between two concepts. We will
use uppercase Greek letters to represent predicates about concepts. Φ(𝑎, 𝑏)
below represents the relation of concept 𝑎 to concept 𝑏.

Φ(𝑎, 𝑏)

2.4.5 – Relations are not transitive. The relation of 𝑎 to 𝑏 is not the same
as the relation of 𝑏 to 𝑎. We know this because the strength of the relation
from one concept to bring to mind another can be stronger in one direction
than the other, say for the proclivity for my concept «brown» to evoke «tree
bark», versus the opposite, «tree bark» to evoke «brown».

Φ(𝑎, 𝑏) ≠ Φ(𝑏, 𝑎)

2.4.6 – In practice relations are generally bidirectional, and include sets of
related items.
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Figure 4: Relation: Concepts hold relations to their components. Pictured
above, 𝑐 hold relations to 𝑏 and to 𝑎, and vice versa. These relations are
indicated by the notations Φ′({𝑎, 𝑐}) and Φ′({𝑏, 𝑐}).

Figure 5: Recountation: Recountation lists related concepts. Above, concept
𝑑 holds relations to 𝑎, 𝑏, 𝑐, and others, which are yielded by operation 𝑅(𝑑).
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2.4.7 – For brevity, we will define Φ′ which will take a set of concepts 𝑆 and
will denote every possible relationship between all members of 𝑆.4

Φ′(𝑆) ≡ ∀𝑥 ∈ 𝑆, ∀𝑦 ∈ 𝑆(Φ(𝑥, 𝑦) ∶ 𝑥 ≠ 𝑦)

2.4.8 – For example, all possible relations between 𝑎, 𝑏, and 𝑐:

Φ′({𝑎, 𝑏, 𝑐}) = Φ(𝑎, 𝑏) ∧ Φ(𝑏, 𝑎) ∧ Φ(𝑎, 𝑐) ∧ Φ(𝑐, 𝑎) ∧ Φ(𝑏, 𝑐) ∧ Φ(𝑐, 𝑏)

2.4.9 – When a new concept is constructed, it naturally retains relations to
the concepts it was constructed from, and the component concepts obtain a
new relation to the constructed concept.

𝐶(𝑎, 𝑏) → 𝑐 ∶ Φ′({𝑎, 𝑐}) ∧ Φ′({𝑎, 𝑏})
𝐶(𝑐) → 𝑑 ∶ Φ′({𝑐, 𝑑})

2.4.10 – Relations of concepts can form bridges between concepts so that
additional direct relations can be formed between them.

2.4.11 – Therefore, based on the above, potentially:

Φ′({𝑎, 𝑏, 𝑐, 𝑑})

2.4.12 – A subset of a concept’s related concepts can be recounted via the
operation 𝑅.

𝑅(𝑐) → {∀𝑥𝑖 ∶ Φ(𝑐, 𝑥𝑖)}
𝑥𝑖 ∈ 𝑅(𝑐) ⇔ Φ(𝑐, 𝑥𝑖)

4Φ′ does not represent a postulated relationship of the mind—it is for notational convenience
only.



3 Productivity

“Truth is ever to be found in simplicity, and not in the multi-
plicity and confusion of things.”

— Isaac Newton

What lends us to prefer one conceptual structure over another? Why do we
apply the honorifics “true” and “real” to some, and dismiss others as “false?”
In the chapter following, we define a pragmatic notion of productivity, the
grounds for our tendency towards certain conceptual structures over others.

25
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3.1 Productivity
3.1.1 – Concepts undergo a selection process. We tend to continue and
increase our usage of concepts that we find useful, and to discontinue or
decrease our usage of concepts that we do not find useful.

3.1.2 – We call the quality of being useful productivity.

3.1.3 – Although concepts may hold some analogy to states of affairs per-
ceived external to the mind, the concept itself is internal to the mind—and
its relations are to other mental entities.

3.1.4 – The boundaries of a concept are defined by the mind, hopefully in a
way that will lead to productive uses.

3.1.5 – For example, there is nothing about the arrangement of atoms in a
baseball that make the molecules within the baseball part of the baseball,
and the molecules of air right next to them not part of the baseball.

3.1.6 – We use the concept «baseball» to refer roughly to a set of atoms in
a particular configuration, because they tend to travel around the physical
world together. Thus, the concept of «baseball» can lead to productive usage.

3.1.7 – To put it another way, a baseball is a «baseball» not because of
something that is a part of its nature, but because we impose that description
on particular forms of matter. We continue to impose that description on
similar features of the world, because it is useful (i.e. productive) to us.

3.1.8 – Most ways of conceptualizing the world would result in a simple cat-
alog of relations. Others conceptual structures are productive, and produce
more utility than is contained within each of them do separately in and of
themselves. This second kind is the one that we tend to continue our use of.

3.2 Productivity Algebra
3.2.1 – We will represent productivity using fractional quantities, but they
will often be a special sort of fractions.

3.2.2 – We will use the notation 𝑄(𝑥) to represent the productivity of a
concept 𝑥, where 𝑛 is the measure of productivity and ℎ is the total measure
of possible productivity.

𝑄(𝑥) = 𝑛
ℎ ∶ 𝑛 ≤ ℎ

3.2.3 – If we have a measure of what a perfect level of productivity would
be, we can represent productivity with a value between 0 and 1.
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3.2.4 – If we do not have a measure of what perfect productivity will be, we
can express values such as 1

ℎ0
, 2

ℎ1
, 3.14159

ℎ1
, 1

ℎ8
, etc., where we understand

ℎ0 to be a hypothetical denominator that operates as an initial point of
reference.

3.2.5 – If a fundamental shift is made that results in an improvement in
the productivity, we “decrease” the ℎ0 to ℎ1 (or ℎ1 to ℎ2, etc.), where each
larger subscript is understood to be an indefinitely smaller value.

ℎ0 ≫ ℎ1 ≫ ℎ2 ≫ …

3.2.6 – We will refer to each ℎ𝑥 as an h-level.

3.2.7 – We will call these values partially-quantified measures of
productivity—as opposed to fully-quantified measures of productivity,
given as normal fractions, e.g. 3

7 .

3.2.8 – This gives us a method of partially quantifying our productivity
based on our present paradigm, without assuming any absolute scale of pro-
ductivity, if needed.

3.2.9 – This may seem rather abstract—and it is—but we do put this algebra
to use in §20.

3.2.10 – As an illustration, any number that is a fraction of ℎ1 is greater
than any number that is a fraction of ℎ0, and so on.

𝑄(𝑥) = 100
ℎ0

𝑄(𝑦) = 1
ℎ1

𝑄(𝑥) < 𝑄(𝑦)

3.2.11 – Or stated more precisely:

∀𝑥, 𝑦, 𝑛, 𝑚 ( 𝑥
ℎ𝑛

< 𝑦
ℎ𝑚

) ∶ (𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑛 < 𝑚)

3.2.12 – When moving from one h-level to another, the productivity moves
to a higher level than can be achieved on the previous level.

3.2.13 – For example, maybe we take pre-Galilean intuitions about mechan-
ics to reside over ℎ0. Galileo’s formulations raised the productivity of the
descriptions incomparably to 1

ℎ1
. Over the intervening centuries and me-

chanics continued to evolved over ℎ1, say to 357
ℎ1

, then Newton raised the
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h-level of productivity to 1
ℎ2

with his laws of motion and law of universal
gravitation.

3.2.14 – Each h-level raises the level of productivity incomparably to the one
previous.

3.2.15 – Productivity of a given h-level added to that of a higher h-level
yields a value that is still meaningfully larger than the previous one:

𝑥
ℎ1

+ 𝑦
ℎ0

> 𝑥
ℎ1

3.2.16 – More precisely:

∀𝑥, 𝑦, 𝑛, 𝑚 ( 𝑥
ℎ𝑚

< 𝑥
ℎ𝑚

+ 𝑦
ℎ𝑛

) ∶ (𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑛 < 𝑚)

3.2.17 – The initial h-level ℎ0 is chosen arbitrarily; the remaining h-levels
are chosen in relation to the initial h-level and to the other h-levels.

3.2.18 – We can also define multiplication of h-values. Take 𝑘 to be a constant
integer.

𝑘 𝑥
ℎ𝑦

=
𝑘

∑
𝑖=1

𝑥
ℎ𝑦

3.2.19 – The operation’s behavior when multiplying h-values together is
summarized below:

∀𝑥, 𝑦, 𝑛, 𝑚 ( 𝑥
ℎ𝑚

> 𝑥
ℎ𝑚

⋅ 𝑦
ℎ𝑛

) ∶ (𝑥 > 0 ∧ 𝑦 > 0)

∀𝑤, 𝑥, 𝑦, 𝑧, 𝑛, 𝑚 (𝑤 𝑥
ℎ𝑚

> 𝑧 𝑦
ℎ𝑛

) ∶ (𝑥 > 0 ∧ 𝑦 > 0 ∧ 𝑤 > 0 ∧ 𝑧 > 0 ∧ 𝑚 > 𝑛)

3.2.20 – A few examples to illustrate:

1
ℎ0

⋅ 1
ℎ0

< 1
ℎ0

⋅ 1
ℎ1

1
ℎ0

⋅ 1
ℎ0

< 1
ℎ1

⋅ 1
ℎ1

⋅ 1
ℎ1

⋅ 1
ℎ1

1
ℎ0

< 1
ℎ1

⋅ 1
ℎ2

⋅ 1
ℎ3

⋅ 1
ℎ4

⋅ …

1
ℎ0

⋅ 1
ℎ100

< 1
ℎ1

⋅ 1
ℎ2

⋅ 1
ℎ3

⋅ 1
ℎ4

⋅ … ⋅ 1
ℎ100
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3.3 Non-Productivity & Counter-Productivity
3.3.1 – There is nothing to stop us from defining one specific helium atom in
the Sun, one specific iron atom in the Earth’s core, and one specific hydrogen
atom in a distant star as “the Hydroplex.” We could do this, but it would
be entirely non-productive and the resulting concept would have no domain.

3.3.2 – We tend to use words that have some productivity—but not always.
Language can be misused to create invalid concepts.

3.3.3 – For example, consider metaphysical entities like justice. If we ask
“Does justice exist?” understood to mean something akin to “Does this
table exist?” we have stretched our use of language to indicate a concept
that cannot actually be instantiated in our minds.

3.3.4 – We must understand the context when we hear some such statement,
that we ought to envision the question to ask, “Do events occur in the world
which we would describe as just?”—not whether there is some separate entity
in the world, called justice.

3.3.5 – We avoid this confusion this by ensuring that concepts we construct
can actually be instantiated clearly in our minds.

3.3.6 – Some usage of language actively works against productivity. In these
cases, we call the statement counter-productive.

3.3.7 – In counter-productive cases, we are led not only into confused or
meaningless concepts, but are actively given the wrong answer to a question
which has a right one.

3.3.8 – Imagine someone asks me, “What time is it?” I quickly look at my
watch to see that it indicates 8:35. I then answer “9:15.” In this example, I
am giving an incorrect answer to a question which has a correct one. This
is an example of counter-productivity.

3.3.9 – Counter-productivity can lead to negative values of productivity,
e.g. − 1

ℎ2
.

3.3.10 – Productivity, along with non-productivity and counter-productivity,
give us a measure for whether our concepts are useful or not. It begins to
form the basis of the attribute we commonly call truth.

3.4 Measuring Productivity
3.4.1 – It is not possible in all circumstances, but productive use of language
can be fully-quantified in some settings.

3.4.2 – Imagine an experiment with two people. Person A is given a five-
dollar bill and two cups. Person A is instructed to hide the bill under one
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of the cups. When Person B enters the room, Person A is allowed only to
say the words “right” or “left.” The two people will split any money that is
found successfully by Person B. Person B does not know what the game is
or what the objective is.

3.4.3 – In the first trial, Person A hides the bill under the cup to his right-
hand side. When Person B enters, Person A says “right.” Person B looks
under the cup to his own right and sees nothing. Person B leaves the room
and the setup is tried again. Person B doesn’t necessarily know that they
failed at anything.

3.4.4 – In the second trial, Person A again hides the bill under the cup to his
right. When Person B enters, he says “left” this time indicating Person B’s
left. Person B, though, suspects that there is an element of cooperation to
the game and that they did not follow direction correctly. This time, Person
B instead looks under the cup to Person A’s right.

3.4.5 – This continues for a few rounds until both Person A and Person B
settle on the same scheme—the instructions will be in relation to Person B’s
right and left. Where initially the chances of Person A and Person B getting
the five-dollar bill are 1

2 (50%), after a few iterations, they will soon have
1
1 (100%) chance of getting the five-dollar bill each time the experiment is
run.

3.4.6 – This is a clear quantitative demonstration of fully-quantified produc-
tivity.

3.4.7 – Not all instances of productivity are fully-quantifiable, but we’ve
shown that productivity can be measured in some circumstances.

3.5 The Direction of Productivity
3.5.1 – We might ask, “Okay, so we can measure productivity sometimes.
But how do we know that when they always get the five-dollar bill it’s 1

1 ,
as in they get the bill 100% of the time—as opposed to 0

1 , as in they don’t
get the bill 0% of the time. Aren’t we smuggling in a sense of one outcome
being better than the other without any explanation for why we can do so?”

3.5.2 – We define getting the bill as more productive, because it is the more
desired outcome for those using the concepts.

3.5.3 – Productivity is not a measure which has no subject in its scheme.
Productivity is an attribute of concepts. Concepts require subjects.

3.5.4 – Our bias towards a certain outcome is justified in the context of the
subject using the concepts.



4 Cognition

“This [guiding principle] may be termed the principle of the com-
plete parallelism of the psychical and the physical. According to
our fundamental conception, which recognizes no gulf between
the two provinces (the psychical and the physical), this principle
is almost a matter of course.’’

— Ernst Mach

The mind is most present to us, and yet often seemingly furthest from expla-
nation. Let’s take a closer look at what the mind is, and lay the groundwork
for our more detailed investigations into how cognition operates in the chap-
ters to come.
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4.1 Correlates of the Mind
4.1.1 – The manifestations of the mind in the world are structures that match
features of the mind’s qualitative structure. That is, we expect the mind’s
other counterparts in the world to hold some properties that correspond to
subjective properties of the mind.

4.1.2 – We will call these other counterparts of the world correlates of the
mind.

4.1.3 – This isn’t very hard to imagine. For example, a person on the north
side of a mountain cannot see its south side. This is because the spatial
locations of the mind’s sensory input organs (i.e. its eyes) are not in a place
that can gain sensory access to the south side of the mountain through
visible light.

4.1.4 – The mind is not identical to its correlates; but it is not separable
from them either. Cognition is a property of the relations between the
mind’s correlates.

4.1.5 – We need not say specifically what the natures of these correlates are
(e.g. that they are neurons, or groups of neurons, or cerebral columns, or
brain wave resonance patterns, or macromolecules, etc.) in order to describe
what we ought to look for in finding them.

4.2 “Physical” & “Mental” Things
4.2.1 – We know that the world contains some arrangements of matter that
correspond to conscious entities. But we cannot say that there are “physical”
things that are separate from “mental” things.

4.2.2 – We can often get the sense that there are solid, tangible things in
the world which are “physical” and other types of things which are “mental”
that we experience.

4.2.3 – And there is no doubt that there are various manifestations of differ-
ent kinds in the world. However, we know there is nothing solid or tangible
about the “physical” things.

4.2.4 – At the most fundamental levels of our scientific description of the
world, we only see equations and other mathematical structures that de-
scribe its behavior and structural relationships.

4.2.5 – But we don’t know what the equations actually describe. This is a
question of metaphysics that has largely been abandoned.

4.2.6 – We do not worry any longer about the ontology of the electron and
all of its alien behaviors. We only care to describe them within a systematic
framework.
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4.2.7 – We will take the view that if you could describe systematically the
patterns of relations that give rise to the mind, you will have at very least
made great strides toward understanding the mind.

4.2.8 – We cannot insist on answers that concern the mind’s “substance”
any more than we can insist to know the “substance” of the electron.

4.2.9 – What we will do is to start from a basic description, and build on
top of that a better description, and so on.

4.2.10 – The world contains electrons; the world contains minds. Instead
of asking, “What is the mind?” we will ask the more productive questions:
“What does the mind do?”, “What relations are present within it?”, and
“Can we describe them precisely?”

4.2.11 – Once it was realized that the earth was round, the question “Does
it have an end?” didn’t make sense anymore. It may be that as the descrip-
tions of the conscious mind are found, we will have a similar outcome.

4.3 Not Just a Computer
4.3.1 – The mind can perform computations. But it is not just a computer.

4.3.2 – Some of the mind’s computations are conscious, as when you perform
mental arithmetic.

4.3.3 – But the most complex computations the mind performs are not
conscious.

4.3.4 – A football wide receiver tracking a ball through the air is performing
a number of complex computations, simultaneously and constantly error
correcting for new input.

4.3.5 – Based on scanty data, his mind must estimate how far away the ball
currently is, what its angle of trajectory is, where that places its expected
point of contact with the ground, how far away that is, based on all of
that, how long the ball will be in the air, and finally how fast and in which
direction he must run to be in position to catch the ball.

4.3.6 – Though the method his mind uses to come to these conclusions
is different from the equations of physics, the end result is—within some
margin of error—the same.

4.3.7 – Countless other abilities we have in visual and auditory processing,
our synthesis and parsing of language, and almost every other useful capa-
bility involve some computation.

4.3.8 – However, the phenomenal experience that each of us realizes subjec-
tively is not a computation, in the same way that the light emitted from my
computer screen is not a computation. The processes that determine what
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to show on the screen are computational. But the backlit screen itself and
the colors that it emits are not computations.

4.3.9 – In the next chapter, we examine the structure of experience, the
input to our minds through perception.



5 Perception

“Each of us believes himself to live directly within the world that
surrounds him, to sense its objects and events precisely, and to
live in real and current time. I assert that these are perceptual
illusions… Each of us lives within the universe—the prison—of
his own brain. Projecting from it are millions of fragile sensory
nerve fibers, in groups uniquely adapted to sample the energetic
states of the world around us: heat, light, force, and chemical
composition. That is all we ever know of it directly; all else is
logical inference.”

— Vernon Benjamin Mountcastle

All concepts in the mind originate in our experience, and in the perceptions
each experience is made of.
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5.1 Perceptions
5.1.1 – Sensory data are the mind’s primitives of input, but they are unavail-
able to the conceptual system directly.

5.1.2 – A perception is a specific sensation as made available to the concep-
tual system.

5.1.3 – For example, visual perceptions consist of color, motion, shape, pat-
tern/texture, extension. Audio perceptions consist of tone, volume, pattern,
duration.

5.1.4 – We also have emotional perceptions. We sense our own emotions in
a manner similar to the sensation of a color or a sound. It occurs to us with
limited ability for us to control it.

5.1.5 – A perception is an aspect of an experience. Each experience is pre-
sented to us as a set of perceptions.

5.1.6 – Each perception is unique to a particular state of the mind’s cor-
relates; by all indications the correlates are mostly or entirely within the
brain.

5.1.7 – The quality of a perception corresponds to the relationships between
its correlates.

5.2 Perceptual Structure
5.2.1 – Perceptions are not the same as sensations. We do not experience
sensations directly, but only after they have been filtered and enhanced
through our mind’s conceptual structure.

5.2.2 – For example, when I look at a word, it is very hard for me to see only
shapes—I see words first and must use effort to view the shapes as they are.

5.2.3 – My conceptual ability to read words has modified my basic visual
perception system to include information beyond the basic arrangement of
visual hues to include more structured and meaningful information.

5.2.4 – It is interesting that this can be done by a skill that is learned several
years into life, as reading. Other truly expert skills can also be modified in
this way, such as when a trained musician can hear and identify auditory
tones.

5.2.5 – It likely also happens much more often early in development, with
vastly more fundamental aspects of our perceptions.

5.2.6 – Our depth perception is clearly not innate to us in the same way
as the two-dimensional array of electromagnetic input on our retinas are.
Stereoscopic vision is a complex process that involves our minds contrasting
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the images we perceive from each eye separately, among many other tricks
we have of discerning distance. And yet, our depth perception gives us close
to the same perception of extension as left-right extension or top-bottom
extension.

5.2.7 – Further, though our minds take in two separate images, it composes
them into what we perceive as a single image.

5.2.8 – Our ability to visually discriminate objects is another example of the
same capability to supplement the raw sensory data in order to give us a
modified, richer perception.

5.2.9 – Clearly, our perceptions are not just as they are, even down to the
identity of objects; these perceptions are laid on top of the raw sensory data.

5.2.10 – We do not see the world as it is—whatever that may mean—but
instead we see a world that has been marked up and modified in ways that
make our perception more useful to us.

5.3 Experience
5.3.1 – Perceptions are sensations as they presented to the conceptual system.
They are indicated by lowercase Greek letters.

5.3.2 – An experience is the conjugation of our perceptions in a given state.
Experience 𝜒 is identical to a set of perceptions {𝛼, …}.

𝜒 ≡ {𝛼, …}

5.3.3 – The mind tends to give the impression that each experience is a unity,
a single thing unto itself. Yet we know that an experience is a structure made
up of multiple perceptions.

5.3.4 – Our perceptions can be broken down further, and analyzed as a
system of correlates—its manifestation.

5.4 Interpretation
5.4.1 – The operation 𝐼 (interpret) takes a set of perceptions and translates
them into a conceptual structure.

5.4.2 – The following shows the interpretation of a set of perceptions {𝛼, …}
yielding conceptual structure 𝑎:

𝐼({𝛼, …}) → 𝑎
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5.4.3 – The resulting conceptual structure 𝑎 corresponds to a model of the
source of those perceptions, the person’s body and environment.

5.4.4 – Operation 𝐼 yields different models, even given the same input, de-
pending on the current state of the mind.

5.4.5 – This is most often represented with a set of perceptions denoted by
an experience 𝜒, in relation to the existing conceptual structures 𝑘:

𝐼(𝜒 ∣ 𝑘) → 𝑎



6 Manifestation

“Almost all aspects of life are engineered at the molecular level,
and without understanding molecules we can only have a very
sketchy understanding of life itself.”

— Francis Crick

With an outline of the conceptual-perceptual system at hand, we venture
further to extend our descriptions to broader and deeper levels of represen-
tation.
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6.1 Stratified Analysis
6.1.1 – In order to explain cognition, we cannot limit ourselves to one level
of description.

6.1.2 – Instead we will begin at the conceptual level, introduced in §1 and
§2, with the simple operations we’ve described that are available for us to
discover through direct subjective experience.

6.1.3 – According to the properties found at the conceptual level, we will
follow our analysis to describe specific relational properties of the mind at
the level of manifested correlates of consciousness.

6.1.4 – We call this multi-layer approach that first describes cognitive pro-
cesses, as they are realized subjectively, and works down through other levels
of manifestation, stratified analysis.

6.2 Perceptual Manifestation
6.2.1 – We now define a function 𝑀 , manifest, which takes a perception
𝛼 and yields its set of its correlates. Note that 𝑀 is not an operation
in that it is not a process that occurs in time, but instead is a mapping
indicates that 𝛼 at the perceptual level is equivalent to its set of correlates
{𝜇𝛼1

, 𝜇𝛼2
, … , 𝜇𝛼𝑛

}.

𝑀(𝛼) = {𝜇𝛼1
, 𝜇𝛼2

, … , 𝜇𝛼𝑛
}

6.2.2 – The inverse of function 𝑀 is 𝐾, collect, which takes a set of correlates
{𝜇𝛼1

, 𝜇𝛼2
, … , 𝜇𝛼𝑛

} and yields their collected concept.

𝐾({𝜇𝛼1
, 𝜇𝛼2

, … , 𝜇𝛼𝑛
}) = 𝛼

6.2.3 – By definition, these functions are directly inverse.

𝑀(𝐾(𝛼)) ≡ 𝐾(𝑀(𝛼)) ≡ 𝛼

6.3 Conceptual Manifestation
6.3.1 – Similarly to perceptions, concepts also have a function 𝑀 which takes
a concept 𝑎 and yields a set of correlates.

𝑀(𝑎) = {𝜇𝑎1
, 𝜇𝑎2

, … , 𝜇𝑎𝑛
}
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Figure 6: Manifestation: The concept 𝑎 is manifested by its set of correlates
𝑀(𝑎) = {𝜇𝑎1

, … , 𝜇𝑎𝑛
}.

Figure 7: Manifested Construction: Construction combines subsets of the
correlates from each of its components.
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6.3.2 – Analogously, its inverse 𝐾:

𝐾({𝜇𝑎1
, 𝜇𝑎2

, … , 𝜇𝑎𝑛
}) = 𝑎

𝑀(𝐾(𝑎)) ≡ 𝐾(𝑀(𝑎)) ≡ 𝑎

6.4 Representation
6.4.1 – This method of describing manifestations is not only agnostic to
the exact nature of the correlates within the world (i.e. neurons, cortical
columns, etc.). But it is also flexible to more abstract descriptions laid on
top of it.

6.4.2 – For example, we might be tempted to imagine each correlate repre-
sented by vertices in a graph or individual nodes in a sparse representation.
However, it’s important to keep in mind that the set of manifestations may
just as well represent the edges in a graph or a specific pattern of sparse
representation.

6.5 Construction
6.5.1 – We can now define the operation 𝐶 at the level of manifestation.
𝐶 takes a subset of the correlates of each of its components, and combines
them via logical union into a new set of correlates, which new set is the
constructed concept.

6.5.2 – Below 𝑆 is a set of concepts with 𝑛 members. A subset 𝑥𝑖 of each
concept 𝑆𝑖’s correlates are combined via logical union into a set of correlates
that are collected via function 𝐾 into a newly constructed concept.

𝐶(𝑆) ≡ 𝐾(
𝑛

⋃
𝑖=1

𝑥𝑖) ∶ 𝑥𝑖 ⊆ 𝑀(𝑆𝑖) ∧ 𝑥𝑖 ≠ {}

6.5.3 – In other words, the constructed concept shares correlates with each
of its components.



7 Conceptual Structure

“If the seemingly limitless multiplicity of color-sensations is
susceptible to being reduced, by psychological analysis (self-
observation), to six elements (fundamental sensations), a like
simplification may be expected for the system of nerve-processes.”

— Ernst Mach

A concept on its own serves hardly any use—except for the intricate web
of relations it holds to other concepts, and the structures that are built
between them.
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7.1 Primitive Concepts
7.1.1 – Certain concepts cannot be enumerated further. They have no com-
ponents except for themselves (though they may still have relations). We
call these primitive concepts.

7.1.2 – We know subjectively that at least some of them are tied directly to
our perceptions.

7.1.3 – These are concepts like «sound», «color», «anger», «pain», «time»,
«extension» (in space). Only direct experience of these things can properly
account for them.

7.1.4 – Even a single experience of a perception can be abstracted and gen-
eralized from. But it cannot be done without the experience.

7.1.5 – We cannot describe these primitive concepts as general concepts
through language alone, to someone who is not already familiar with them
through their own experience. We cannot explain «red» to a person who
was born blind.

7.1.6 – A blind person could have hallucinations of color, but they would
never have any criteria for qualifying a specific color they hallucinated as
one color or another, or even that what they experienced was a color.

7.1.7 – We can describe particular instances of primitive concepts in compar-
ison to other instances of them. “As long as a football field.” “Red-orange.”
“A honk like a train’s horn.” These make sense only in relation to other
instances of the concept.

7.1.8 – When a primitive concept is enumerated, it yields only itself.

7.1.9 – The predicate Π indicates that its term is a primitive.

Π(𝑗) ≡ 𝐸(𝑗) → 𝑗

7.1.10 – All other concepts can be constructed through specific associations
of the primitive concepts.

7.2 Generalization
7.2.1 – Concepts are the echos of perceptions.

7.2.2 – Primitive concepts are not constructed, but are instead generalized
from perceptions instead. Every primitive concept has been generalized from
a perception or set of perceptions.
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Figure 8: Generalization: Generalization creates a new concept by pooling
common correlates from one or more perceptions. Pictured above, concept
𝑐 is generalized from perceptions 𝛼 and 𝛽.

Figure 9: Generalization Illustrated: The concept «black» is generalized
from the perceptions ‹tire› and ‹spider›.
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7.2.3 – We will take generalization to be an operation 𝐺 which takes a set
of one or more perceptions {𝛼, …} and generalizes from them a concept 𝑖,
potentially a primitive concept.

𝐺({𝛼, …}) → 𝑖

7.2.4 – We will define 𝐺 as the logical intersection of the manifestations of
each of the perceptions it is generalized from.

7.2.5 – Below 𝑆 is a set of perceptions with 𝑛 members. A subset 𝑥𝑖 of
each perception 𝑆𝑖’s correlates are combined via logical intersection into a
set of correlates that are collected via function 𝐾 into a newly constructed
concept.

𝐺(𝑆) ≡ 𝐾(
𝑛

⋂
𝑖=1

𝑥𝑖) ∶ 𝑥𝑖 ⊆ 𝑀(𝑆𝑖), 𝑥𝑖 ≠ {}

7.2.6 – In other words, the constructed concept shares its correlates with all
of its components—they are common to each member of 𝑆.

7.3 Conceptual Recursion
7.3.1 – Our minds can yield nearly infinite new concepts through the recur-
sive combination of other concepts via the operation 𝐶.

𝐶({𝑐} ∪ {𝐶({𝑎, 𝑏})}) → 𝑑

7.3.2 – This is very similar to our capacity to produce practically infinite
new English sentences.

7.3.3 – Although recursive, operation 𝐸 does not have the same quality.

7.3.4 – Because of the existence of primitive concepts, all concepts can only
be enumerated to some finite number of steps; once a primitive concept is
obtained, repeated applications of 𝐸 will yield the same concept.

𝐸(𝑎) → 𝑏
𝐸(𝑏) → 𝑐

...
𝐸(𝑦) → 𝑧

𝐸(𝑧) → 𝑧 ∶ Π(𝑧)
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Figure 10: Recursive Construction: Concepts can be recursively constructed
indefinitely.

Figure 11: Recursive Enumeration: Concepts can be recursively enumerated
only until primitive concepts are encountered.
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7.3.5 – This is for the same reason that all words in the dictionary will
ultimately be found to be self-referential (directly or indirectly) or that one
or more of the words in their definition will be directly or indirectly self-
referential.

7.3.6 – Based on our reasoning here, we are making a potentially testable
empirical claim. We are saying that our minds must generalize primitive
concepts from perceptions before other complex concepts can be constructed.

7.4 Relationships
7.4.1 – Each subsequent mental state is a modification of the previous one;
it is not replaced all at once.

7.4.2 – When perceptions lead to correlates that are shared by existing con-
cepts, those concepts will tend to result from each other.

7.4.3 – We can now give a more explicit account of when two concepts are
related: namely, that two concepts, perceptions, or other mental entities are
related if they share common correlates.

Φ(𝑎, 𝑏) ≡ (𝑀(𝑎) ∩ 𝑀(𝑏) ≠ {})

7.4.4 – This can happen explicitly, as between a concept and its components.

(𝐶({𝑎}) → 𝑏) ⇒ (𝑀(𝑎) ∩ 𝑀(𝑏) ≠ {}) ⇒ Φ(𝑎, 𝑏)

7.4.5 – It may also occur implicitly. For example, perception 𝛼 always or
usually co-occurs with perception 𝛽.

7.4.6 – In such circumstances, when concept 𝑐 is generalized from 𝛼, some
correlates of 𝛽 may be included in the correlates of 𝑐, causing a relation.

7.4.7 – Let’s consider the example of two experiences: 𝜒0 consisting of 𝛼
and 𝛽, and 𝜒1 consisting of only 𝛽.

𝜒0 = {𝛼, 𝛽}, 𝜒1 = {𝛽}

(𝐺(𝜒0) → 𝑐) ⇒ ((𝑀(𝑐) ∩ 𝑀(𝛼) ≠ {}) ∧ (𝑀(𝑐) ∩ 𝑀(𝛽) ≠ {}))

𝐺(𝜒1) → 𝑑

7.4.8 – When 𝑀(𝑐) ∩ 𝑀(𝛽) ∩ 𝑀(𝑑) ≠ {}:

Φ(𝑐, 𝑑)
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7.4.9 – Relations between concepts indicate that when the mind is in the
state represented by one concept, there is some probability that it will lead
causally to the other concept.

7.4.10 – In other words, Φ(𝑎, 𝑏) means that when the mind is in the state
indicated by concept 𝑎, there is some probability that it will be followed by
the state indicated by concept 𝑏.

7.4.11 – We indicate this probability as Φ∗(𝑏 ∣ 𝑎), the probability that 𝑏 will
result from state 𝑎:

Φ∗(𝑏 ∣ 𝑎) ∈ [0, 1]

7.4.12 – The sum of all Φ∗ following from 𝑎 is equal to 1:

∀𝑎 ∑
𝑥∈𝑅(𝑎)

Φ∗(𝑥 ∣ 𝑎) = 1

7.4.13 – We can also state these probabilities in terms of a sequence of
multiple states leading to them. For example, Φ∗(𝑐 ∣ 𝑏 ∣ 𝑎) represents the
probability that 𝑐 will follow 𝑏 after 𝑏 follows 𝑎.

7.4.14 – And similar to the above from §7.4.12:

∀𝑎 ∑
𝑥∈𝑅(𝑎)

∑
𝑦∈𝑅(𝑥)

Φ∗(𝑦 ∣ 𝑥 ∣ 𝑎) = 1

7.4.15 – Because these values are probabilities, all of a concept’s relations—
in terms of probability—tend to weaken as more relationships are added.
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8 Semantic Operations

“Meaning is what essence becomes when it is divorced from the
object of reference and wedded to the word.”

— W.V.O. Quine

In order to cover the breadth of our experience, a significant piece is miss-
ing: the ability to specify the semantic nature of the relationships between
conceptual structures.
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8.1 Conceptual Relationships
8.1.1 – Now given the operations we have defined, we can specify relation-
ships between concepts and conceptual structures, but we are not able to
specify what the nature of those relationships are.

8.1.2 – Let’s take as example the sentence Bob kicks the ball. We could
imagine a simple structure defined in terms of 𝐶 to represent it:

𝐶({«Bob», «kick», «the ball»}) → «Bob kicks the ball»

8.1.3 – This would combine each of the component concepts «Bob», «kick»,
and «the ball», as we’ve set out to. But a problem arises: how can we
distinguish what is being kicked from what is doing the kicking.

8.1.4 – To specify this semantic relationship, we define a new type of concept
called a component class.

8.2 Component Classes
8.2.1 – A component class serves as a template for some other concept which
can be substituted for it.

8.2.2 – From our above example, the concept «kick» has two roles implied
within it: the [kicker]—i.e. the thing doing the kicking—and the [kickee]—
i.e. the thing being kicked. We will specify component classes as terms inside
square brackets.

8.2.3 – Further, each component class can have its own structure. For ex-
ample:

𝐶({«has a foot», «can apply force»}) → «kicker»

8.2.4 – And also:

𝐶({«physical object»}) → «kickee»

8.2.5 – These statements mean that a «kicker» must have the components
represented by «has a foot» and «can apply force», and that a «kickee» must
have the component represented by «physical object», respectively.

8.2.6 – Note that in this context, they are referred to as «kicker» and «kic-
kee», as opposed to [kicker] and [kickee].

8.2.7 – The reason is because «kicker» and «kickee» are just normal concepts
like any other. It’s only in the context of «kick» that they are parameters,
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Figure 12: Kicker Definition: Definition of «kicker». When combined with
the proxy, «kicker» becomes the component class [kicker].

Figure 13: Kickee Definition: Definition of «kickee». When combined with
the proxy, «kicker» becomes the component class [kickee].

Figure 14: Kick Definition: Definition of «kick», shown with the shorthand
for component classes and its equivalent conceptual structure.
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meaning that they serve as a placeholder or template for some other concept
that can be substituted. In that context, we say that «kick» has been
parameterized.

8.2.8 – When a concept is tagged into a component class we represent that
by using operation 𝐶 to construct the component class, which we call the
tag, with the symbol [ ], which we refer to as the proxy.

8.2.9 – A component class is the construction of a concept with the proxy.
Shown by example:

𝐶({«kicker», [ ]}) → [kickee]

8.3 Construction Shorthand
8.3.1 – Because the structures we build are becoming more complex, let’s
introduce a new shorthand for 𝐶 to improve legibility:

𝐶({𝑎, 𝑏}) ≡ ⟨𝑎, 𝑏⟩

8.3.2 – For example, the definition of «kick» from above can be written as:

«kick» = ⟨⟨«kicker», [ ]⟩, ⟨«kickee», [ ]⟩⟩

8.3.3 – Or equivalently:

«kick» = ⟨[kicker], [kickee]⟩

8.4 Class Matching
8.4.1 – In order to put component classes to use, our minds need a method
for determining whether one concept matches the structure of the one that
serves as the tag for the component class.

8.4.2 – Let’s define a new predicate Υ, which indicates that concept 𝑎
matches the tag 𝑏.

8.4.3 – However first, we need a predicate to determine whether a concept
itself is parameterized, which we will denote Υ′. Υ′ is part of Υ, and is
defined here separately for legibility only.

Υ′(𝑎) ≡ ∀𝑥∃𝑦(𝑥 ∈ 𝐸(𝑎) ∧ 𝑦 ∈ 𝐸(𝑥) ∧ 𝑦 = [ ])
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8.4.4 – Now, the definition of Υ:

Υ(𝑎, 𝑟) ≡ ∀𝑥 ∈ 𝐸(𝑟)

⎧{{{
⎨{{{⎩

|𝐸(𝑎)| > 0 if 𝑥 = [ ]
[ ] ∈ 𝐸(𝑎) if 𝑥 = [⋅]
∀𝑦 ∈ 𝐸(𝑎)Υ(𝑦, 𝑥) if Υ′(𝑥)
𝑥 ∈ 𝐸(𝑎) otherwise

8.4.5 – If Υ(𝑎, 𝑟), we say that 𝑎 matches 𝑟.

8.4.6 – Stated differently, every component of 𝑏 is also a component of 𝑎,
except for [ ], which matches any concept, and [⋅], which matches exactly [ ].
8.4.7 – [⋅], the dot proxy, is a new symbol that allows us to match the proxy
symbol itself, instead of using it as a placeholder.

8.4.8 – We denote the version of any concept that has its [ ]s replaced with
[⋅] by placing a dot over it, as below:

̇[kicker] = ⟨«kicker», [⋅]⟩

8.4.9 – Shown by example, the following produce matches:

Υ(𝑎, 𝑎)
Υ([ ], [⋅])

Υ(⟨«has a foot», «can apply force», … ⟩, «kicker»)

Υ(⟨«kicker», «Fred»⟩, ⟨«kicker», [ ]⟩)

Υ(⟨⟨«kicker», «Joe»⟩, ⟨«kickee», [ ]⟩⟩, «kick»)

8.4.10 – And the following do not:

¬Υ(⟨«has a foot»⟩, «kicker»)

¬Υ(«some other concept», «kickee»)

¬Υ(«not-proxy», [⋅])

8.4.11 – A matched concept transitively shares all of its relations with the
concepts it matches:
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Υ(𝑎, 𝑏) ⇒ ∀𝑥(𝑥 ∈ 𝑅(𝑏) ⇒ 𝑥 ∈ 𝑅(𝑎))

∀𝑥(𝑥 ∈ 𝑅(𝑏) ⇒ 𝑥 ∈ 𝑅(𝑎)) ⇒ ∀𝑥(Φ(𝑏, 𝑥) ⇒ Φ(𝑎, 𝑥))

8.4.12 – In addition to the predicate Υ, we also define an operation 𝑌 , match,
which yields «true» when its first argument matches the second argument,
and «false» otherwise:

𝑌 (𝑎, 𝑟) ≡ {«true» if Υ(𝑎, 𝑟)
«false» otherwise

8.5 Transclusion
8.5.1 – The ability to match conceptual structures based on patterns is
potentially useful for building new structures with a semantic context.

8.5.2 – But we can only put this capability to use if we can substitute
conceptual structures into others.

8.5.3 – We need a method of replacing a component class with a concrete
concept.

8.5.4 – Operation 𝑇 , transclude, substitutes 𝑏 for the concept tagged 𝑟 in 𝑎:5

𝑇 (𝑎, 𝑟, 𝑏) → 𝑎′ ∶ Υ(𝑏, 𝑟)

𝑇 (𝑎, 𝑟, 𝑏) ≡ 𝐶((𝐸(𝑎) \ {⟨𝑟, [ ]⟩}) ∪ {⟨𝑟, 𝑏⟩})

8.5.5 – When 𝑏 is substitutes for 𝑟’s proxy through transclusion, it leaves the
tag in place to indicate its class:

«kick» = ⟨[kicker], [kickee]⟩ = ⟨⟨«kicker», [ ]⟩, [kickee]⟩

«Bob» = ⟨«has foot», «can apply force», … ⟩

𝑇 («kick», «kicker», «Bob») → «kick»′

∶ «kick»′ = ⟨⟨«kicker», «Bob»⟩, [kickee]⟩

8.5.6 – We can then apply transclusion again to transclude «the ball» as the
[kickee].

5The proper definition of 𝑇 replaces ⟨𝑟, [ ]⟩ with 𝑋(𝑎, 𝑟), defined in the next section, so
that the substitution generalizes to any concept tagged 𝑟.
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Figure 15: Kick Definition: Recall our definition of «kick».

Figure 16: Transclusion Illustration 1: Transclusion from «kick» to «kick»′.
«Bob» is trancluded for [kicker].

Figure 17: Transclusion Illustration 2: Transclusion from «kick»′ to «kick»″.
«the ball» is trancluded for [kickee].
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«the ball» = ⟨«physical object», … ⟩

𝑇 («kick»′, «kickee», «the ball») → «kick»″

∶ «kick»″ = ⟨⟨«kicker», «Bob»⟩, ⟨«kickee», «the ball»⟩⟩

∶ «kick»″ = «Bob kicks the ball»

8.6 Extraction
8.6.1 – Now that we can transclude concepts into other concepts, fulfilling
its semantic roles, we need an operation where we can extract a transcluded
concept from another.

8.6.2 – Below 𝑋(𝑎′, 𝑟) extracts the concept tagged with 𝑟 from 𝑎′ to yield b:

𝑋(𝑎′, 𝑟) → 𝑏

8.6.3 – From our example above:

𝑋(«kick»″, «kicker») → «Bob»
𝑋(«kick»″, «kickee») → «the ball»

8.6.4 – When there is no such concept, the null concept ∅ is yielded:

𝑋(«kick»″, «some concept») → ∅

8.6.5 – One thing to note is that 𝑋 doesn’t necessarily have to operate on a
concept that was produced via 𝑇 . Any concept can tag another if they have
been composed.

𝐶({𝐶({𝑎, 𝑏}), 𝑐}) → 𝑑
𝑋(𝑑, 𝑏) → 𝑎
𝑋(𝑑, 𝑎) → 𝑏

8.6.6 – In other words 𝑋 is defined in terms of structure, as opposed to how
the structure was obtained.

8.6.7 – Because of its common use, we will often denote 𝑋 by an alternate
syntax for legibility:

𝑋(𝑎, «concept») ≡ 𝑎[concept]
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8.7 Manifested Definitions
8.7.1 – Predicate Υ(𝑎, 𝑟) indicates that every manifestation of 𝑟 is also a
manifestation of its match 𝑎:

Υ(𝑎, 𝑟) ≡ ∀𝑥(𝑥 ∈ 𝑀(𝑟) ⇒ 𝑥 ∈ 𝑀(𝑎))

8.7.2 – Recall from §7.4.3:

Φ(𝑎, 𝑏) ≡ (𝑀(𝑎) ∩ 𝑀(𝑏) ≠ {})

8.7.3 – We can now prove the theorem that every matched concept must
share relations with its match:

𝑥 ∈ 𝑀(𝑟) ⇒ (𝑥 ∈ 𝑀(𝑟) ∧ 𝑥 ∈ 𝑀(𝑎))

(𝑥 ∈ 𝑀(𝑟) ∧ 𝑥 ∈ 𝑀(𝑎)) ⇒ (𝑀(𝑟) ∩ 𝑀(𝑎) ≠ {})

∴∀𝑦(Φ(𝑟, 𝑦) ∧ Υ(𝑎, 𝑟)) ⇒ Φ(𝑎, 𝑦)

8.7.4 – Operation 𝑇 removes from the manifestation of 𝑎, the complement of
the manifestation of 𝑟 and another set 𝑟′—where the manifestation of 𝑟′ is
a subset of the manifestation of 𝑎 and a superset of the manifestation of 𝑟—
and replaces the removed set with the manifestation of 𝑏. 𝑟′ is understood
to be the composition of 𝑟 and [ ].
8.7.5 – More formally:

𝑇 (𝑎, 𝑟, 𝑏) → 𝑎′

∶ 𝑎′ ≡ 𝐾((𝑀(𝑎) \ (𝑀(𝑟′) \ 𝑀(𝑟))) ∪ 𝑀(𝑏))

∶ ∃𝑟′(𝑀(𝑟) ⊂ 𝑀(𝑟′) ⊆ 𝑀(𝑎) ∧ 𝑀(𝑟) ⊆ 𝑀(𝑏))

8.7.6 – Operation 𝑋 is defined using a similar structure in reverse.

8.7.7 – Operation 𝑋 yields a subset from the manifestation of 𝑎′, the mani-
festation 𝑟″—where the manifestation of 𝑟″ is a subset of the manifestation
of 𝑎′ and a superset of the manifestation of 𝑟.

𝑋(𝑎′, 𝑟) → 𝑏
∶ 𝑏 ≡ 𝐾(𝑀(𝑟″))

∶ ∃𝑟″(𝑀(𝑟) ⊂ 𝑀(𝑟″) ⊆ 𝑀(𝑎′))
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Figure 18: Transclusion: An illustration of 𝑇 (𝑎, 𝑟, 𝑏) → 𝑎′ depicting the
operation structurally.

Figure 19: Manifested Transclusion: In this diagram, the concentric circles
and symbols represent subsets of 𝑎’s manifestations. The operation substi-
tutes the manifestation of the proxy for the manifestation of 𝑏.

Figure 20: Manifested Extraction: This diagram shows the extraction of the
concept 𝑏 tagged by 𝑟 from 𝑎′, denoted 𝑋(𝑎′, 𝑟) → 𝑏.



9 Mechanical Framework

“We do not know what the rules of the game are; all we are
allowed to do is to watch the playing. Of course, if we watch
long enough, we may eventually catch on to a few of the rules.”

— Richard Feynman

We now have a full account of the fundamental operations within the sys-
tem. In this chapter we will restate them to give us a clear picture of our
framework.

Moving forward, we show that limiting ourselves only to simple operations
we have defined so far, we can create and manipulate a vast array of new
conceptual structures and mechanisms.
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9.1 Basic Operations
9.1.1 – Operation 𝐶, compose, enables us to construct new concepts from
existing ones. This capability is an essential property of the human mind.

E.g. I combine my concepts «tall» and «tree» into a «tall tree».

9.1.2 – Operation 𝐸, enumerate, gives us a method for recalling the compo-
nents of a concept in a hierarchical manner; it will only yield direct compo-
nents of its argument.

E.g. A «dead grass» is a composition of my concepts «dead» and
«grass».

9.1.3 – When operation 𝐶 is applied, it creates relations between its argu-
ments. The relations are the propensity for the mind in the state of one
concept to subsequently lead to a state consisting of another concept.

E.g. «big city» holds relations to «big», «city», «Chicago», and
other concepts.

9.1.4 – Operation 𝑅, recount, is the operation that enacts this change of
state from one concept to one or more of its related concepts.

E.g. The concept «city» may remind me of «big city». «big
city» may remind me of «Chicago». «Chicago» may remind me
of «trains».

9.1.5 – Operation 𝑅 also gives us a way to establish connections between
concepts in a non-hierarchical way, as opposed to the inherently hierarchical,
structure-preserving nature of operation 𝐸.

E.g. The concept «city» may remind me of «trains», without
thinking of «Chicago» or any other concept between.

9.2 Perceptual Operations
9.2.1 – Operation 𝐼 , interpret, takes a perception as an argument and pro-
duces an analogous concept.

E.g. When I see a ‹rectangle›, the instantiation of a «shape»
takes place in my mind.
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9.2.2 – Operation 𝐺 takes a set of perceptions as its argument, and yields a
new concept from their common correlates.

E.g. 𝐺({‹wool›, ‹cotton›, ‹dandelion›}) may generalize the visual
texture «fuzzy».

9.3 Semantic Operations
9.3.1 – Operation 𝑇 , transclude, enables us to substitute conceptual struc-
tures into other conceptual structures in a way that enforces semantic limi-
tations. 𝑇 is the ability to create concrete structures from abstract ones.

E.g. The concept «drive» has component classes for [driver] and
[vehicle]. I can transclude «John» into «drive» as the [driver],
and «my truck» as the [vehicle], to yield the new concept «John
driving my truck».

9.3.2 – Operation 𝑋, extract, gives us the ability to obtain conceptual struc-
tures contained within others based on semantic and structural criteria.

E.g. From «John driving my truck», I can extract the «driver»—
«John»—and the «vehicle»—«my truck».

9.3.3 – Operation 𝑌 determines whether one conceptual structure matches
that of another.

E.g. «John» matches «driver», but not «my truck».

9.4 Manifestations
9.4.1 – Mapping 𝑀 gives the representation of a mental entity at the level
of the correlates.

E.g. 𝑀(«𝐽𝑜ℎ𝑛») may represent some pattern of neuronal activity
in the brain.

9.4.2 – Mapping 𝐾 inversely takes a representation at the correlate level,
and yields a mental entity.

E.g. 𝐾({𝜇1, 𝜇2, 𝜇3}) may manifest the concept «shovel».
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10 Memory

“We learn by rearranging what we know.”

— Ludwig Wittgenstein

No system of cognition can serve much purpose without a system for storing
and accessing the mental entities available to it. In the chapter that follows,
we begin to show how memory materializes itself within our framework.
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10.1 Memory
10.1.1 – Memory is the ability to replicate aspects of a previous mental state
(i.e. to recall concepts).

10.1.2 – Memory has two essential aspects. There must be some representa-
tion, that is stored; and there must be some mode of access to restore the
state within the representation.

10.1.3 – To have some stored representation is useless if it can’t be accessed
again at a later time.

10.2 Associative Learning
10.2.1 – Associative learning is the development of the mechanisms that store
representations and their modes of access to function more productively.

10.2.2 – Operation 𝐿, learn, then is defined as a new operation that takes 𝑎,
combines it with the already existing concept 𝑏 to construct 𝑎′:

𝐿(𝑎 ∣ 𝑏) → 𝑎′ ≡ 𝐶({𝑎, 𝑏}) → 𝑎′

∶ 𝑀(𝑎′) = 𝐴 ∪ 𝐵 ∶ 𝐴 ⊆ 𝑀(𝑎), 𝐵 ⊆ 𝑀(𝑏)

10.2.3 – From implication of the above, we can prove the theorem that 𝑎
and 𝑏 are now related such that when 𝑏 is recounted 𝑎 is a possible result:

𝐿(𝑎 ∣ 𝑏) ⇒ (Φ(𝑎′, 𝑎) ∧ Φ(𝑏, 𝑎′))

Φ(𝑏, 𝑎′) ⇒ (𝑅(𝑏) → {𝑎′, …})

Φ(𝑎′, 𝑎) ⇒ (𝑅(𝑎′) → {𝑎, …})

∴𝑅(𝑏) → {𝑎, …}

10.2.4 – In the description above, 𝑀(𝑎′) is the representation of 𝑎, and 𝑅(𝑏)
is the mode of access to 𝑎′.

10.2.5 – The probability that recounting 𝑏 will produce 𝑎 is given as follows:

Φ∗(𝑎 ∣ 𝑏) = Φ∗(𝑎′ ∣ 𝑏) ⋅ Φ∗(𝑎 ∣ 𝑎′)

10.2.6 – This is a demonstration of associative learning, where one concept
becomes related to another such that the concept of one can produce another
by being recounted.
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10.2.7 – This operation can be expanded so that the learned concept 𝑎
becomes associated with more than one other concept, represented by the
set of concepts 𝑆:

𝐿(𝑎 ∣ 𝑆) → 𝑎′ ≡ 𝐶({𝑎} ∪ 𝑆) → 𝑎′

𝐿(𝑎 ∣ 𝑆) ⇒ Φ′({𝑎′} ∪ 𝑆) ∧ Φ(𝑎′, 𝑎)
∴𝑅(𝑥) → {𝑎, …} ∶ 𝑥 ∈ 𝑆

10.2.8 – With the probability of this occurence given as:

Φ∗(𝑎 ∣ 𝑥) = Φ∗(𝑎′ ∣ 𝑥) ⋅ Φ∗(𝑎 ∣ 𝑎′)

10.2.9 – Or in the case that every member of S should be included:

Φ∗(𝑎 ∣ 𝑆) = ∑
𝑠∈𝑆

Φ∗(𝑎′ ∣ 𝑠) ⋅ Φ∗(𝑎 ∣ 𝑎′)
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11 Numbers & Quantity

“People think that mathematics is complicated. Mathematics is
the simple bit, it’s the stuff we CAN understand. It’s cats that
are complicated.”

— John Horton Conway

In the following chapter, we observe how simple mathematical structures
cleanly fall out of the conceptual framework we have developed, almost
entirely without modification.
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11.1 Varieties of Quantity
11.1.1 – While we often think of them as the same, the mind has many
conceptual models of numbers and quantities.

11.1.2 – The simplest concept of quantity is centered only around the ideas
“more,” “less,” “the same”—or stated alternatively “a lot,” “a little,” “some-
where in between.” We will call this capability estimation.

11.1.3 – The next simplest numeric capability is that of discrete pattern
recognition. This is the ability to pick out a number of items purely based
on a visual pattern.

11.1.4 – For example, you can look at a set of four balls, and determine purely
based on pattern alone that there are indeed four balls—without counting
or any other iterative process. This capability is called subitization.6

11.1.5 – The average human capability for subitization usually hits its limit
at four to five items.7

11.1.6 – Some animals, including chimpanzees and parrots, have been shown
to be capable of subitization.8

11.1.7 – Beyond subitization, humans are also capable of counting, the re-
cursive enumeration of quantities. Only human beings are known to be able
to count.

11.1.8 – Humans are, of course, capable of even further representations of
numbers and quantity—including digital numbers, complex numbers, etc.—
via intentional construction of new conceptual paradigms.

11.1.9 – In the following sections, we will explore conceptual representations
of two of these paradigms: counting and digital numbers.

11.1.10 – The representations that follow are meant as plausible concep-
tual representations of these numerical types. However, it is almost certain
that each person has slightly different conceptual instantiations of each, and
even may have slightly different instantiations at different times, or multiple
alternative structures she may choose from.

11.1.11 – We will restrict ourselves only to using the fundamental operations
that have already been defined previously. This leaves a solid foothold for the
idea that our numerical ability is a spandrel—an evolutionary side effect—of
our conceptual capabilities outlined previously.

6Tomonaga & Matsuzawa (2002).
7Ibid.
8See Tomonaga & Matsuzawa (2002) and Pepperberg (1994).
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11.2 Counting & Successor
11.2.1 – In order to represent counting numbers, we will need a conceptual
representation of zero, and an operation to obtain the next counting num-
ber.9

11.2.2 – Our representation of zero will be composed of the concept «num»,
which will serve as a tag, and the proxy:

«0𝑐» ≡ ⟨«num», [ ]⟩

11.2.3 – The 𝑐 subscript indicates that it is a counting number.

11.2.4 – Let’s define the successor operation 𝐻0, the operation that yields
the next counting number after the number given:10

𝐻0(𝑛) ≡ ⟨«num», 𝑛⟩

11.2.5 – Note that is equivalent to the following definition in terms of 𝐶:

𝐻0(𝑛) ≡ 𝐶({«num», 𝑛})

11.2.6 – To illustrate:

«1𝑐» ≡ 𝐻0(«0𝑐») ≡ ⟨«num», ⟨«num», [ ]⟩⟩

«2𝑐» ≡ 𝐻0(«1𝑐») ≡ ⟨«num», ⟨«num», ⟨«num», [ ]⟩⟩⟩

11.2.7 – And so on. From here forward, we will use the notation «𝑛𝑐» to
denote the concept of the counting number 𝑛.

11.2.8 – Note that although we may denote the number with two digits,
e.g. «17𝑐», there is no concept within the counting numbers of multiple
digits. The only significance of «17𝑐» is that it is the counting number after
«16𝑐», which is the counting number after «15𝑐», etc.

9This idea is borrowed from a field called Peano arithmetic, named for the Italian mathe-
matician, Giuseppe Peano.

10Also from Peano arithmetic, successor is the conventional term which produces the next
natural number after a given one. 𝐻0 represents the zeroth hyperoperation. Hyperoperations
are successive arithmentical operations, starting from the successor, through addition, multi-
plication, exponentiation, tetration (repeated exponentiation), etc.
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Figure 21: Counting Numbers: This graphic shows the conceptual structures
«0», «1», and «2».

Figure 22: Successor: The successor operation 𝐻0 is depicted above to yield
«1» from «0» by composing «0» with «num».

Figure 23: Anti-Successor: The anti-successor operation 𝐻−1
0 is depicted

above to yield «0» from «1» by extracting the «0» tagged with «num».
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11.3 Anti-Successor
11.3.1 – We may also define the inverse of 𝐻0, the anti-successor 𝐻−1

0 , which
takes a counting number and yields the number previous:

𝐻−1
0 (𝑛) ≡ 𝑋(⟨𝑛⟩, «num»)

11.3.2 – By example:

𝐻−1
0 («1𝑐») ≡ 𝑋(⟨⟨«num», ⟨«num», [ ]⟩⟩⟩, «num»)

𝐻−1
0 («1𝑐») → ⟨«num», [ ]⟩

11.3.3 – From §11.2.2 above, ⟨«num», [ ]⟩ is the definition of «0𝑐», thus:

𝐻−1
0 («1𝑐») → «0𝑐»

11.3.4 – From here forward, for notational convenience, unless otherwise
specified, any concept given simply as «𝑛» will be understood to be «𝑛𝑐».

«0» ≡ «0𝑐»
«532» ≡ «532𝑐»

11.4 Comparison
11.4.1 – We’ll need a way to compare these newly defined quantities.

11.4.2 – We will say that one counting number 𝑎 is greater than or equal
counting number 𝑏 if a and b are numerals and a matches b.

11.4.3 – Notice that:

Υ(⟨«num», ⟨«num», [ ]⟩⟩, ⟨«num», [ ]⟩)

11.4.4 – And, of course:

Υ(⟨«num», [ ]⟩, ⟨«num», [ ]⟩)

11.4.5 – But not:

¬Υ(⟨«num», [ ]⟩, ⟨«num», ⟨«num», [ ]⟩⟩)
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11.4.6 – We notice also that all counting numbers match «0», so for clarity we
define «any-num», such that for any counting number 𝑛, Υ(𝑛, «any-num»):

«any-num» ≡ «0»

11.5 Sequences
11.5.1 – We can also use our existing operations to define simple sequences.

11.5.2 – Each element of the sequence will be given a numeric key, corre-
sponding to the index of its order within the sequence.

11.5.3 – Since we will use numerals to indicate both the index and value of
each member of the sequence, we introduce a new specifier 𝜅.

11.5.4 – 𝜅 composes the provided concept with a concept «key», to distin-
guish it from the numerical value of the equivalent numeral:

𝜅(𝑛) ≡ 𝐶({𝑛, «key»})

11.5.5 – As a shorthand, we will indicate these keyed concepts with an over-
bar:

𝜅(𝑛) ≡ �̄�
𝜅(«53») ≡ ̄«53»

11.5.6 – In order to preserve consistency with the remainder of our opera-
tions, we also define the following identities for basic counting operations:

𝐻0(𝑎) → 𝑏 ⟺ 𝐻0( ̄𝑎) → �̄�
𝐻−1

0 (𝑎) → 𝑏 ⟺ 𝐻−1
0 ( ̄𝑎) → �̄�

11.5.7 – For example:

𝐻0(«0») → «1» ⟹ 𝐻0(« ̄0») → « ̄1»
𝐻−1

0 («4») → «3» ⟹ 𝐻−1
0 (« ̄4») → « ̄3»

11.5.8 – Below we have our empty sequence, «sequence»:

«sequence» ≡ ⟨⟩
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11.5.9 – We can now write to our empty «sequence» via 𝑇 :

𝑇 («sequence», « ̄0», 𝑛) → 𝑖

∶ 𝑖 = ⟨⟨« ̄0», 𝑛⟩⟩

𝑇 (𝑖, « ̄1», 𝑚) → 𝑗

∶ 𝑗 = ⟨ ⟨« ̄0»), 𝑛⟩, ⟨« ̄1», 𝑚⟩⟩

11.5.10 – Note that 𝑇 in this usage does not enforce the structural require-
ments that it does when used to transclude concepts with semantic content.
Transcluding a key ignores the semantic requirements.

11.5.11 – We can then later retrieve the values with 𝑋′, an analog of 𝑋
which returns «0» instead of ∅ when the given key doesn’t exist.

11.5.12 – 𝑋′ will yield the «sequence»’s value at the given key in the se-
quence, if it exists; otherwise it will yield «0»:

𝑋′(𝑎, 𝑟) ≡ {«0» if 𝑋(𝑎, 𝑟) = ∅
𝑋(𝑎, 𝑟) otherwise

11.5.13 – We will give a definition 𝑋′ in terms of fundamental operations as
a conceptual machine in §12.4.1.

11.5.14 – Continuing the example above:

𝑋′(𝑗, « ̄0») → 𝑛
𝑋′(𝑗, « ̄1») → 𝑚

11.5.15 – When the given key doesn’t yet exist in the sequence we yield the
default value «0»:

𝑋′(𝑗, « ̄31») → «0»

11.5.16 – In practice, we will usually omit the 𝑋′ notation; in any case where
𝑋 is applied to a «sequence», it is understood to be an application of 𝑋′,
including in the shorthand notation.

𝑗[ ̄31] → «0»
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12 Conceptual Machines

“It is perhaps a little humbling to discover that we as humans
are in effect computationally no more capable than cellular
automata with very simple rules.”

— Stephen Wolfram

In this chapter we set the simple elements of our framework to use building
conceptual machines, automata that enact our mathematical and computa-
tional abilities.

77
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12.1 The Structure of a Conceptual Machine
12.1.1 – A conceptual machine consists of a set of conceptual structures and
their relations. The conceptual structures determine template states for the
conceptual structures that a machine acts upon.

12.1.2 – Each state’s relations determine transformation rules for the follow-
ing state from each template.

12.1.3 – According to the theorem developed in §8.7.3, every concept that
matches the structure of the state transitively shares the state’s relations.

12.1.4 – Each relation performs transformations on the template concept by
use of existing operations, or their combinations. All transformations ulti-
mately reduce either directly to a fundamental operation, or a combination
of fundamental operations.

12.1.5 – This allows us to create patterns of behavior that are embodied
in the machines. We can define transformations on families of matched
concepts instead of specific concrete concepts. We will see these at work in
the following sections.

12.2 A Composing Machine
12.2.1 – In order to demonstrate conceptual machines, we will develop a
simple composing machine, ℳ𝐶 which will take two concepts and produce
a composition of them via operation 𝐶.

12.2.2 – To define the potential states of the machine, we will first need a
state specifier. A specifier is a template for a conceptual structure, and an
associated notation to make its meaning more clear.

12.2.3 – State specifiers are denoted 𝜎.

12.2.4 – In the present case of our composing machine, we define 𝜎𝐶 :

𝜎𝑐(𝑠, 𝑐1, 𝑐2) ≡ ⟨⟨«state», 𝑠⟩, ⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩⟩

12.2.5 – With the tag «state» and its possible values:

Υ({«begin», «end»}, «state»)

12.2.6 – This is a new shorthand that stands for:

Υ(«begin», «state») ∧ Υ(«end», «state»)
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12.2.7 – The «begin» state indicates that the operation has not yet applied.
«end» indicates that the operation has been applied, and prevents further
application of the same operation.

12.2.8 – «op1» and «op2» represent arbitrary conceptual structures with no
structural requirements. «op1» and «op2» are the inputs to 𝐶, and «op2»
becomes the product of the operation after it is applied.

12.2.9 – Below, we define a machine state which represents the machine
before the operation has been applied, an indication to the machine that
there is work to be done.

12.2.10 – First, 𝑠0𝐶
, the state before the operation is applied:

𝑠0𝐶
= 𝜎𝐶(«begin», [ ], [ ])

12.2.11 – Notice that the structure this produces matches a structure with
any concept for «op1» and «op2».

12.2.12 – With our state defined, we now need to define a relation. In this
case, instead of using our Φ notation, we’re going to use a new notation that
invokes operation 𝑅 directly. This notation makes it more clear that we are
defining a transformation.11

𝑅(𝑠0𝐶
) → 𝜎𝐶(«end», [ ], ⟨𝑠0𝐶

[op1], 𝑠0𝐶
[op2]⟩)

12.2.13 – Stated in plain language, what the above says is when recounting
a concept that matches the structure of 𝑠0𝐶

, replace its «state» with «end»,
replace its «op1» with the proxy, and replace its «op2» with the composition
of its «op1» and «op2».

12.2.14 – Notice that we only denote one product of the operation, as op-
posed to a set of products as in its definition in §2.4.12. This is allowed
by the rule of operations §2.1.16, and it implies that Φ∗(𝑠0𝐶

, 𝑅(𝑠0𝐶
)) = 1,

i.e. that no other resultant states are possible.

12.2.15 – Certainly, we know in an actual mind no mechanism is perfect; it
is far to complex for such black and white measures. But in our context, we
do want a deterministic transformation, wherein each time the conceptual
machine is in a certain state, exactly one state is the correct subsequent
state.

12.2.16 – We could imagine machines that are not deterministic and are
instead stochastic.12 These types of machines clearly offer rich possibilities
for future exploration, but they are not covered in this work.

11Note the use of the alternate syntax for operation 𝑋, defined in §8.6.7.
12These machines could be modeled as Markov processes.
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Figure 24: Composing Machine Structure: Here we see a general represen-
tation of the state 𝑠0𝐶

and its transformation via 𝑅(𝑠0𝐶
).

Figure 25: Composing Machine Evaluated: This illustrates a concrete enact-
ment of the transformation rule indicated above.
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12.2.17 – In this case we need only one defined state for our entire machine.
Once the transformation from the first state has occurred, no further work
is required.

12.2.18 – Let’s introduce the definition of the machine itself, which is simply
the set of its of states. We denote machines as ℳ, with a subscript to denote
which specific machine it is.

ℳ𝐶 = {𝑠0𝐶
}

12.2.19 – In order to make the workings of our machine ℳ𝐶 more obvious,
let’s give a couple concrete examples:

𝑠𝑒𝑥1
= 𝜎𝐶(«begin», 𝑏, 𝑐)

𝑅(𝑠𝑒𝑥1
) → 𝜎𝐶(«end», [ ], ⟨𝑏, 𝑐⟩)

𝑠𝑒𝑥2
= 𝜎𝐶(«begin», «comfy», «couch»)

𝑅(𝑠𝑒𝑥2
) → 𝜎𝐶(«end», [ ], ⟨«comfy», «couch»⟩)

12.3 Machine Specifiers
12.3.1 – We now introduce a new type of specifier, which we will call machine
specifiers. Machines specifiers simply define the initial state of the machine
as an alias of a state specifier.

12.3.2 – The first machine specifier we will define for ℳ𝐶 will set the «state»
to «begin» and will accept arguments for the other parameters to 𝜎𝐶 .

ℳ𝐶(𝑜1, 𝑜2) ≡ 𝜎𝐶(«begin», 𝑜1, 𝑜2)

12.3.3 – To illustrate its function:

ℳ𝐶(«fast», «car») ≡ 𝜎𝐶(«begin», «fast», «car»)

12.3.4 – We can also specify an alternate version that takes only one argu-
ment and allows us to set an initial default state for «op2»:

ℳ𝐶(𝑜1) ≡ 𝜎𝑏(«iter», 𝑜1, «some-default-value»)
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12.4 X′ Machine
12.4.1 – Let’s give a definition of 𝑋′ from §11.5.12 now fully in terms of
fundamental operations as a conceptual machine.

12.4.2 – First, our machine specifier 𝜎𝑋′ :

𝜎𝑋′(𝑠, 𝑡, 𝑣, 𝑟) ≡ ⟨⟨«sequence», 𝑠⟩, ⟨«tag», 𝑡⟩, ⟨«value», 𝑣⟩, ⟨«result», 𝑟⟩⟩

12.4.3 – The first state moves «sequence»’s value of «tag» into «value»:

𝑠0𝑋′ = 𝜎𝑋′([ ], [ ], [⋅], [⋅])

𝑅(𝑠0𝑋′ ) → 𝜎𝑋′(𝑠0𝑋′ [sequence], 𝑠0𝑋′ [tag],
𝑋(𝑠0𝑋′ [sequence], 𝑠0𝑋′ [tag]), [ ])

12.4.4 – Our second state sets «result» to «0» when «value» is ∅, and cleans
up the remainder of the structure:

𝑠1𝑋′ = 𝜎𝑋′([ ], [ ], ∅, [⋅])

𝑅(𝑠1𝑋′ ) → 𝜎𝑋′([ ], [ ], [ ], «0»)

12.4.5 – If «value» is set, our third state moves «value» into «result» and
cleans up the remainder of the structure.

𝑠2𝑋′ = 𝜎𝑋′([ ], [ ], [ ], [⋅])

𝑅(𝑠2𝑋′ ) → 𝜎𝑋′([ ], [ ], [ ], 𝑠2𝑋′ [value])

12.4.6 – Notice that the order here matters. We take the order of the state
definitions to be the order they are matched in. If 𝑠2𝑋′ were defined before
𝑠1𝑋′ , the default state would never be reached.

12.4.7 – Now we can define our machine specifier ℳ𝑋′ for operation 𝑋′ in
terms of its state specifier 𝜎𝑋′ , and a restated definition of operation 𝑋′:

ℳ𝑋′(𝑠, 𝑡) ≡ 𝜎𝑋′(𝑠, 𝑡, [ ], [ ])

𝑋′(𝑎, 𝑟) ≡ 𝑋(𝑅(ℳ𝑋′(𝑎, 𝑟)), «result»)
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Figure 26: 𝑋′ State Graph: This graph shows the possible state transitions
of ℳ𝑋′ . Note the branching between 𝑠1𝑋′ and 𝑠2𝑋′ , depending on whether
«sequence»’s value of «tag» is set.

Figure 27: Repeating Machine State Graph: The repeating machine ℳ𝑟
iterates in its initial state 𝑠0𝑟

until it completes.
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12.5 A Repeating Machine
12.5.1 – It’s often necessary in any number of mental operations to repeat a
task some set number of times. We will see an illustration of this in practice
below.

12.5.2 – Let’s define a new machine ℳ𝑟 which repeats an operation according
to the number of times supplied by a given counting number.

12.5.3 – In plain English, our machine will:

1. Perform 𝑅 on a given structure 𝑠.
2. Decrement a numeric counter 𝑛.
3. Substitute given values for particular tagged components in 𝑠.
4. If 𝑛 ≠ «0», repeat from #1; otherwise stop.

12.5.4 – First let’s define the machine’s conceptual structure:

𝜎𝑟(𝑠, 𝑛, 𝑡, 𝑣) ≡ ⟨⟨«structure», 𝑠⟩, ⟨«num», 𝑛⟩, ⟨«tag», 𝑡⟩, ⟨«value», 𝑣⟩⟩

12.5.5 – This machine takes a conceptual «structure» 𝑠, likely defined by
some other specifier, a «num» of times to complete the operation 𝑛, a «tag»
𝑡 which indicates a component of 𝑠 which will be overwritten after each
operation, and a «value» 𝑣, which will be overwritten to the component
tagged by 𝑡.
12.5.6 – The «tag» and «value» allow us to reset the state of the structure,
so that it resumes a form that can be evaluated again by 𝑅.

12.5.7 – Let’s first define 𝑠0𝑟
, the state when there are still 𝑛 times yet to

complete the operations, where 𝑛 ≠ «0»:

𝑠0𝑟
= 𝜎𝑟([ ], «not-0», [ ], [ ])

12.5.8 – Here we take «not-0» as equivalent to «1», because every number
other than «0» matches «1» via Υ(𝑥, «1»).

«not-0» ≡ «1»

12.5.9 – We then apply the operation we are repeating, which is the same
as applying operation 𝑅 to structure 𝑠0𝑟

[structure]:

𝑅(𝑠0𝑟
[structure]) → 𝑠0𝑟

[structure]′
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12.5.10 – 𝑠0𝑟
of our repeating machine yields the next state through the

following relation:

𝑅(𝑠0𝑟
) → 𝜎𝑟(𝑇 (𝑠0𝑟

[structure]′, 𝑠0𝑟
[tag], 𝑠0𝑟

[value]),

𝐻−1
0 (𝑠0𝑟

[num]), 𝑠0𝑟
[tag], 𝑠0𝑟

[value])

12.5.11 – The repeating machine concludes when 𝑛 = «0»:

𝑠1𝑟
= 𝜎𝑟([ ], ̇«0», [ ], [ ])

𝑅(𝑠1𝑟
) → 𝜎𝑟(𝑠1𝑟

[structure], [ ], [ ], [ ])

12.5.12 – For legibility, we often show our states in an instruction table:

𝑠 𝑅(𝑠)

𝑠0𝑟

«structure» [ ] 𝑇 (𝑠0𝑟
[structure]′, 𝑠0𝑟

[tag], 𝑠0𝑟
[value])

«num» «not-0» 𝐻−1
0 (𝑠0𝑟

[num])
«tag» [ ] 𝑠0𝑟

[tag]

«value» [ ] 𝑠0𝑟
[value]

𝑠1𝑟

«structure» [ ] 𝑠1𝑟
[structure]

«num» ̇«0» [ ]

«tag» [ ] [ ]

«value» [ ] [ ]

12.5.13 – We may need to reset more than one value after each repetition.
In practice, we will use 𝜎𝑟 with an arbitrary number of replacements:

𝜎𝑟(𝑠, 𝑛, 𝑡1, 𝑣1, 𝑡2, 𝑣2, …) ≡

⟨⟨«structure», 𝑠⟩, ⟨«num», 𝑛⟩, ⟨«tag-1», 𝑡1⟩, ⟨«value-1», 𝑣1⟩,

⟨«tag-2», 𝑡2⟩, ⟨«value-2», 𝑣2⟩, … ⟩
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12.5.14 – We will skip showing the definition for each version of 𝜎𝑟 for brevity.
They will follow the following pattern:

ℳ𝑟(𝑠, 𝑛) ≡ 𝜎𝑟(𝑠, 𝑛, [ ] …)
ℳ𝑟(𝑠, 𝑛, 𝑡, 𝑣) ≡ 𝜎𝑟(𝑠, 𝑛, 𝑡, 𝑣, [ ] …)

ℳ𝑟(𝑠, 𝑛, 𝑡1, 𝑣1, 𝑡2, 𝑣2) ≡ 𝜎𝑟(𝑠, 𝑛, 𝑡1, 𝑣1, 𝑡2, 𝑣2, [ ] …)
…

12.6 Compound Machines
12.6.1 – In some cases, we may want to combine the behavior of one or
more other machines. We call these combinations of machines compound
machines.

12.6.2 – There are two ways to combine the behavior of machines. The first
is structurally, wherein we use a specifier from one machine to specify part
of another machine. The other is relationally, in which the behavior of one
machine is included inside another via its usage in defining a relation or
relations between states.

12.6.3 – We are going to illustrate both methods in machines that display
equivalent behavior below. Both machines repeatedly apply operation 𝐶 us-
ing ℳ𝐶 . One of them achieves this structurally using the machine specifiers
of ℳ𝐶 and ℳ𝑟 (i.e. §12.7) and another does so relationally by invoking
𝑅(ℳ𝐶) inside the definition of another machine’s relations (i.e. §12.8).

12.7 Structurally Compound Machines
12.7.1 – For our structural compound example, let’s combine the specifica-
tion of ℳ𝐶 and ℳ𝑟 into a new machine structure.

𝑠𝑒𝑥3
= ℳ𝑟(ℳ𝐶(«A», «B»), «3», «state», «begin», «op1», «A»)

12.7.2 – The above is equivalent to the more explicit structure:

𝑠𝑒𝑥3
= ⟨⟨«structure», ℳ𝐶(«A», «B»)⟩⟨«num», «3»⟩,

⟨«tag1», «state»⟩, ⟨«value1», «begin»⟩, ⟨«tag2», «op1»⟩, ⟨«value2», «A»⟩⟩

12.7.3 – Where ℳ𝐶(«A», «B») is, from above:

ℳ𝐶(«A», «B») =
⟨⟨«state», «begin»⟩, ⟨«op1», «A»⟩, ⟨«op2», «B»⟩⟩
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12.7.4 – This operation ought to compose «A» into the «op2» 3 times, yield-
ing a new structure that is 3 levels deep.

12.7.5 – Let’s see it in action:

«structure» «num»

𝑅(𝑠0𝑟
) → 𝑠0𝑟

ℳ𝐶(«A», «B») «3»

ℳ𝐶([ ], ⟨«A», «B»⟩) «3»

𝑅(𝑠0𝑟
) → 𝑠0𝑟

ℳ𝐶(«A», ⟨«A», «B»⟩) «2»

ℳ𝐶([ ], ⟨«A», ⟨«A», «B»⟩⟩) «2»

𝑅(𝑠0𝑟
) → 𝑠1𝑟

ℳ𝐶(«A», ⟨«A», ⟨«A», «B»⟩⟩) «1»

ℳ𝐶([ ], ⟨«A», ⟨«A», ⟨«A», «B»⟩⟩⟩) «1»

𝑅(𝑠1𝑟
) ℳ𝐶([ ], ⟨«A», ⟨«A», ⟨«A», «B»⟩⟩⟩) «0»

12.8 Relationally Compound Machines
12.8.1 – Now let’s look at an equivalent relationally compound machine.
This method requires we that define a new machine that utilizes another
machine (or machines) within its relations.

12.8.2 – Our machine will produce the same result, ⟨«A», ⟨«A», ⟨«A», «B»⟩⟩⟩,
through another methodology.

12.8.3 – This machine will operate on the same principles as the repeating
machine, but in actual practice relationally compound machines can give
more flexibility than would be gained from the structurally compound ma-
chine above.13

12.8.4 – First we will define an operation in terms of ℳ𝐶 :

𝐶𝑜𝑝(𝑜1, 𝑜2) ≡ 𝑋(𝑅(ℳ𝐶(𝑜1, 𝑜2)), «op2»)

12.8.5 – Then we define a simple machine to repeat the operation:

𝜎𝑟𝑐(𝑜1, 𝑜2, 𝑛) = ⟨⟨𝑜1, «op1»⟩, ⟨𝑜2, «op2»⟩, ⟨𝑛, «num»⟩⟩

13In the latter chapters of the book we will see that any machine, including compound
relational machines, can be represented structurally; but we will ignore this caveat for the time
being.
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12.8.6 – Our first defined state matches when there are remaining repetitions
represented by 𝑛. Note the usage of 𝐶𝑜𝑝.

𝑠0𝑟𝑐
= 𝜎𝑟𝑐([ ], [ ], «not-0»)

𝑅(𝑠0𝑟𝑐
) → 𝜎𝑟𝑐(𝑠0𝑟𝑐

[op1], 𝐶𝑜𝑝(𝑠0𝑟𝑐
[op1], 𝑠0𝑟𝑐

[op2]), 𝐻−1
0 (𝑠0𝑟𝑐

[num]))

12.8.7 – And our second state defines the completed state after the repeated
𝐶𝑜𝑝 has been applied, with the result in «op2»:

𝑠1𝑟𝑐
= 𝜎𝑟𝑐([ ], [ ], ̇«0»)

𝑅(𝑠1𝑟𝑐
) → 𝜎𝑟𝑐([ ], 𝑠1𝑟𝑐

[op2], [ ])

12.8.8 – Let’s illustrate with an analogous example to §12.7:

𝑠𝑒𝑥4
= 𝜎𝑟𝑐(«A», «B», «3»)

𝑅(𝑠𝑒𝑥4
) → 𝜎𝑟𝑐([ ], ⟨«A», ⟨«A», ⟨«A», «B»⟩⟩⟩, [ ])

12.8.9 – Step-by-step below:

«op1» «op2» «num»

𝑅(𝑠0𝑟𝑐
) → 𝑠0𝑟𝑐

«A» «B» «3»

𝑅(𝑠0𝑟𝑐
) → 𝑠0𝑟𝑐

«A» ⟨«A», «B»⟩ «2»

𝑅(𝑠0𝑟𝑐
) → 𝑠0𝑟𝑐

«A» ⟨«A», ⟨«A», «B»⟩⟩ «1»

𝑅(𝑠0𝑟𝑐
) → 𝑠1𝑟𝑐

«A» ⟨«A», ⟨«A», ⟨«A», «B»⟩⟩⟩ «0»

𝑅(𝑠1𝑟𝑐
) [ ] ⟨«A», ⟨«A», ⟨«A», «B»⟩⟩⟩ [ ]
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“When we talk mathematics, we may be discussing a secondary
language, built on the primary language truly used by the central
nervous system.”

— John von Neumann

In this chapter, we put our conceptual machines to use in defining arithmeti-
cal operations on counting numbers.

89
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13.1 Hyperoperations
13.1.1 – By convention, successive arithmetic operations are defined as hy-
peroperations, beginning with the successor function, 𝐻0, defined previously
in §11.2.5 as:

𝐻0(𝑛) ≡ 𝐶({«num», 𝑛})

13.1.2 – In this view of mathematical hyperoperations, each successive hy-
peroperation is denoted by incrementing the subscript, with the semantic
interpretion of each as a repetition of the previous hyperoperation.

13.1.3 – For example, addition, 𝐻1(𝑎, 𝑏), can be seen as repeated application
of the successor function. Multiplication, 𝐻2(𝑎, 𝑏), can be seen as repeated
application of the addition function. Exponentiation, 𝐻3(𝑎, 𝑏), can be seen
as repeated application of the multiplication function. Beyond exponentia-
tion, the pattern holds with a fourth operation known as tetration, a fifth
called pentation, and so forth.

13.1.4 – There are a few caveats here. 0 is used as the identity before any
successive operations are applied under 𝐻1, while 1 is used as the identity
for all subsequent operations.

13.1.5 – For example:

𝐻1(𝑥, 0) = 𝑥 + 0 = 𝑥
𝐻2(𝑥, 1) = 𝑥 × 1 = 𝑥

𝐻3(𝑥, 1) = 𝑥1 = 𝑥
𝐻4(𝑥, 1) = 𝑥
𝐻5(𝑥, 1) = 𝑥

13.1.6 – Whereas:

𝐻1(𝑥, 1) = 𝑥 + 1 = 𝐻0(𝑥)
𝐻2(𝑥, 0) = 𝑥 × 0 = 0

𝐻3(𝑥, 0) = 𝑥0 = 1
𝐻4(𝑥, 0) = 1
𝐻5(𝑥, 0) = 1

13.1.7 – In this chapter we will implement machines to represent these hy-
peroperations (and their inverses) on counting numbers.
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13.2 Addition
13.2.1 – As noted, addition can be thought of as the repeated application
of the successor function, with zero as the identity. Let’s implement this
operation as a new machine, ℳ1𝑐

.

13.2.2 – Our machine specifier 𝜎0𝑐
will hold three parameters: «op1», «op2»,

and «sum».

𝜎1𝑐
(𝑜1, 𝑜2, 𝑟) = ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«sum», 𝑟⟩⟩

13.2.3 – Our first state copies «op1» to «sum» and replaces it with [ ] when
«sum» is the proxy:

𝑠0𝑐1
= 𝜎1𝑐

([ ], [ ], [⋅])

𝑅(𝑠0𝑐1
) → 𝜎1𝑐

([ ], 𝑠0𝑐1
[op2], 𝑠0𝑐1

[op1])

13.2.4 – Our second state matches the machine when «op2» is greater than
«0»:

𝑠1𝑐1
= 𝜎1𝑐

([⋅], «not-0», [ ])

𝑅(𝑠1𝑐1
) → 𝜎1𝑐

([ ], 𝐻−1
0 (𝑠1𝑐1

[op2]), 𝐻0(𝑠1𝑐1
[sum]))

13.2.5 – We can see that this relation simply subtracts one from «op2» and
adds it to «sum».

13.2.6 – Our final state cleans up, leaving only the result in «sum»:

𝑠2𝑐1
= 𝜎1𝑐

([⋅], ̇«0», [ ])

𝑅(𝑠2𝑐1
) → 𝜎1𝑐

([ ], [ ], 𝑠2𝑐1
[sum])

13.2.7 – Now our machine specifier:

ℳ1𝑐
(𝑜1, 𝑜2) ≡ 𝜎1𝑐

(𝑜1, 𝑜2, [ ])

13.2.8 – And our operation:

𝐻1𝑐
(𝑜1, 𝑜2) ≡ 𝑋(𝑅(ℳ1𝑐

(𝑜1, 𝑜2)), «sum»)



92 13 ARITHMETICAL MACHINES

Figure 28: Arithmetical Machine State Graphs: Notice the similarities be-
tween the states of the hyperoperations above. In later chapters, we will
explore how we can generalize these similarities.
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13.2.9 – Note the general structure of the instructions below. There will be
general patterns that occur in following hyperoperations.

13.2.10 – This will become of significant importance later in the book, when
we create machines that generalize other machines, and in fact build a ma-
chine that generalizes hyperoperations.

13.2.11 – Here’s our addition instruction table:

𝑠 𝑅(𝑠)

𝑠0𝑐1

«op1» [ ] [ ]

«op2» [ ] 𝑠0𝑐1
[op2]

«sum» [⋅] 𝑠0𝑐1
[op1]

𝑠1𝑐1

«op1» [⋅] [ ]

«op2» «not-0» 𝐻−1
0 (𝑠1𝑐1

[op2])
«sum» [ ] 𝐻0(𝑠1𝑐1

[sum])
𝑠2𝑐1

«op1» [⋅] [ ]

«op2» ̇«0» [ ]

«sum» [ ] 𝑠2𝑐1
[sum]

13.2.12 – Illustrated with ℳ1𝑐
(«4», «3»), we expect a «sum» of «7»:

«op1» «op2» «sum»

ℳ1𝑐
(«4», «3») «4» «3» [ ]

𝑅(𝑠0𝑐1
) → 𝑠1𝑐1

[ ] «3» «4»

𝑅(𝑠1𝑐1
) → 𝑠1𝑐1

[ ] «2» «5»

𝑅(𝑠1𝑐1
) → 𝑠1𝑐1

[ ] «1» «6»

𝑅(𝑠1𝑐1
) → 𝑠2𝑐1

[ ] «0» «7»

𝑅(𝑠2𝑐1
) [ ] [ ] «7»
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13.3 Multiplication
13.3.1 – Now we can use our new addition operation, 𝐻1𝑐

(𝑜1, 𝑜2), to define
a multiplication machine through relational composition.

13.3.2 – Our specifier 𝜎2𝑐
takes 3 arguments, «op1», «op2», and «product».

𝜎2𝑐
(𝑜1, 𝑜2, 𝑟) = ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«product», 𝑟⟩⟩

13.3.3 – Our first state 𝑠0𝑐2
sets «product» to «0»:

𝑠0𝑐2
= 𝜎2𝑐

([ ], [ ], [⋅])

𝑅(𝑠0𝑐2
) → 𝜎2𝑐

(𝑠0𝑐2
[op1], 𝑠0𝑐2

[op2], «0»)

13.3.4 – Our second state adds «op1» to «sum» and decrements «op2», so
long as «op2» is greater than «0»:

𝑠1𝑐2
= 𝜎2𝑐

([ ], «not-0», [ ])

𝑅(𝑠1𝑐2
) → 𝜎2𝑐

(𝑠1𝑐2
[op1], 𝐻−1

0 (𝑠1𝑐2
[op2]), 𝐻1𝑐

(𝑠1𝑐2
[product], 𝑠1𝑐2

[op1]))

13.3.5 – Notice the reference here back to our addition operation 𝐻1𝑐
.

13.3.6 – Our final state resets «op1» and «op2» to [ ], leaving only «product»,
when «op2» is equal to «0».

𝑠2𝑐2
= 𝜎2𝑐

([ ], ̇«0», [ ])

𝑅(𝑠2𝑐2
) → 𝜎2𝑐

([ ], [ ], 𝑠2𝑐2
[product])

13.3.7 – Below we define our machine specifier ℳ2𝑐
:

ℳ2𝑐
(𝑜1, 𝑜2) ≡ 𝜎2𝑐

(𝑜1, 𝑜2, [ ])

13.3.8 – And our operation 𝐻2𝑐
:

𝐻2𝑐
(𝑜1, 𝑜2) ≡ 𝑋(𝑅(ℳ2𝑐

(𝑜1, 𝑜2)), «product»)

13.3.9 – Let’s illustrate 2 × 3 = 6 with ℳ2𝑐
(«2», «3»):
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«op1» «op2» «product»

ℳ2𝑐
(«2», «3») «2» «3» [ ]

𝑅(𝑠0𝑐2
) → 𝑠2𝑐1

«2» «3» «0»

𝑅(𝑠2𝑐1
) → 𝑠2𝑐1

«2» «2» «2»

𝑅(𝑠2𝑐1
) → 𝑠2𝑐1

«2» «1» «4»

𝑅(𝑠2𝑐1
) → 𝑠2𝑐2

«2» «0» «6»

𝑅(𝑠2𝑐2
) [ ] [ ] «6»

13.4 Exponentiation
13.4.1 – Similarly, we can utilize our multiplication operation, 𝐻2𝑐

(𝑜1, 𝑜2),
to define an exponentiation machine.

13.4.2 – Our specifier 𝜎3𝑐
takes 3 arguments, «op1», «op2», and «power».

𝜎3𝑐
(𝑜1, 𝑜2, 𝑟) = ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«power», 𝑟⟩⟩

13.4.3 – Our first state, sets «power» to «1»:

𝑠0𝑐3
= 𝜎3𝑐

([ ], [ ], [⋅])

𝑅(𝑠0𝑐3
) → 𝜎3𝑐

(𝑠0𝑐3
[op1], 𝑠0𝑐3

[op2], «1»)

13.4.4 – Our second state multiplies «power» by «op1» and decrements
«op2», so long as «op2» is greater than «0»:

𝑠1𝑐3
= 𝜎3𝑐

([ ], «not-0», [ ])

𝑅(𝑠1𝑐3
) → 𝜎3𝑐

(𝑠1𝑐3
[op1], 𝐻−1

0 (𝑠1𝑐3
[op2]), 𝐻2𝑐

(𝑠1𝑐3
[power], 𝑠1𝑐3

[op1]))

13.4.5 – Notice the usage here of our multiplication operation, 𝐻2𝑐
.

13.4.6 – And finally we reset «op1» and «op2» to [ ], leaving only «power»,
when «op2» is equal to «0».

𝑠2𝑐3
= 𝜎3𝑐

([ ], ̇«0», [ ])

𝑅(𝑠2𝑐3
) → 𝜎3𝑐

([ ], [ ], 𝑠2𝑐3
[power])
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13.4.7 – Below we have our machine specifier and operation:

ℳ3𝑐
(𝑜1, 𝑜2) ≡ 𝜎3𝑐

(𝑜1, 𝑜2, [ ])

𝐻3𝑐
(𝑜1, 𝑜2) ≡ 𝑋(𝑅(ℳ3𝑐

(𝑜1, 𝑜2)), «power»)

13.4.8 – Let’s demonstrate 34 with ℳ3𝑐
(«3», «4»):

«op1» «op2» «power»

ℳ3𝑐
(«3», «4») «3» «4» [ ]

𝑅(𝑠0𝑐3
) → 𝑠1𝑐3

«3» «4» «1»

𝑅(𝑠1𝑐3
) → 𝑠1𝑐3

«3» «3» «3»

𝑅(𝑠1𝑐3
) → 𝑠1𝑐3

«3» «2» «9»

𝑅(𝑠1𝑐3
) → 𝑠1𝑐3

«3» «1» «27»

𝑅(𝑠1𝑐3
) → 𝑠2𝑐3

«3» «0» «81»

𝑅(𝑠2𝑐3
) [ ] [ ] «81»

13.5 Subtraction
13.5.1 – Now that we’ve built up the first few hyperoperations, it would also
be useful to demonstrate how to construct their inverses. Let’s specify our
first inverse, 𝐻−1

1 , subtraction.

13.5.2 – Similar to addition, subtraction can be seen in terms of repeated
applications of 𝐻−1

0 .

13.5.3 – Our machine specifier 𝜎−1
1𝑐

will hold «op1», «op2», and «diff».

𝜎−1
1𝑐

(𝑜1, 𝑜2, 𝑟, 𝑞) = ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«diff», 𝑟⟩⟩

13.5.4 – Our first state copies «op1» to «diff» and replaces it with [ ] when
«sum» is the proxy and the operands are any two valid numbers. We will
introduce the new notation «any-num», which is equivalent to «0» (the
concept that matches any counting number):

𝑠−1
0𝑐1

= 𝜎−1
1𝑐

(«any-num», «any-num», [⋅])

𝑅(𝑠−1
0𝑐1

) → 𝜎−1
1𝑐

([ ], 𝑠−1
0𝑐1

[op2], 𝑠−1
0𝑐1

[op1])
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13.5.5 – Our second state decrements «op2» and «diff», so long as «op2»
and «diff» are greater than «0»:

𝑠−1
1𝑐1

= 𝜎−1
1𝑐

([⋅], «not-0», «not-0»)

𝑅(𝑠−1
1𝑐1

) → 𝜎−1
1𝑐

([ ], 𝐻−1
0 (𝑠−1

1𝑐1
[op2]), 𝐻−1

0 (𝑠−1
1𝑐1

[diff]))

13.5.6 – Our third state cleans up the state, leaving only the result in «diff»:

𝑠−1
2𝑐1

= 𝜎−1
1𝑐

([⋅], ̇«0», [ ])

𝑅(𝑠−1
2𝑐1

) → 𝜎−1
1𝑐

([ ], [ ], 𝑠−1
2𝑐1

[diff])

13.5.7 – Our fourth state cleans up the state in the case of a negative number,
leaving only the difference in «op2»:

𝑠−1
3𝑐1

= 𝜎−1
1𝑐

([⋅], [ ], ̇«0»)

𝑅(𝑠−1
3𝑐1

) → 𝜎−1
1𝑐

([ ], 𝑠−1
3𝑐1

[op2], [ ])

13.5.8 – Let’s illustrate with ℳ−1
1𝑐

(«4», «3»). We would expect «diff» = «1»:

«op1» «op2» «diff»

ℳ−1
1𝑐

(«4», «3») «4» «3» [ ]

𝑅(𝑠−1
0𝑐1

) → 𝑠−1
1𝑐1

[ ] «3» «4»

𝑅(𝑠−1
1𝑐1

) → 𝑠−1
1𝑐1

[ ] «2» «3»

𝑅(𝑠−1
1𝑐1

) → 𝑠−1
1𝑐1

[ ] «1» «2»

𝑅(𝑠−1
1𝑐1

) → 𝑠−1
2𝑐1

[ ] «0» «1»

𝑅(𝑠−1
2𝑐1

) [ ] [ ] «1»

13.5.9 – Note that if at any point «op2» > «0» and «diff» = «0», the
machine would fall into an invalid state when 𝐻−1

0 is applied to «diff»’s «0».
A proxy would be left in «diff», with a value one fewer than the remaining
number in «op2».

13.5.10 – This feature of a proxy resulting as the operation’s «diff» has
important uses in the division machine.
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13.5.11 – First, recall the definition of zero from §11.2.2:

«0𝑐» ≡ ⟨«num», [ ]⟩

13.5.12 – Along with the definition of 𝐻−1
0 from §11.3:

𝐻−1
0 (𝑛) ≡ 𝑋(⟨𝑛⟩, «num»)

13.5.13 – In order to avoid this outcome, we only decrement so long as
«diff» > «0». When «0» remains in «diff» with a numeric value in «op2»,
the value in «op2» represents the remainder, a negative number.

13.5.14 – Let’s try again with ℳ−1
1𝑐

(«3», «5»), with an expected “remainder”
of «2» (representing −2) in «op2»:

«op1» «op2» «diff»

ℳ−1
1𝑐

(«3», «5») «3» «5» [ ]

𝑅(𝑠−1
0𝑐1

) → 𝑠−1
1𝑐1

[ ] «5» «3»

𝑅(𝑠−1
1𝑐1

) → 𝑠−1
1𝑐1

[ ] «4» «2»

𝑅(𝑠−1
1𝑐1

) → 𝑠−1
1𝑐1

[ ] «3» «1»

𝑅(𝑠−1
1𝑐1

) → 𝑠−1
3𝑐1

[ ] «2» «0»

𝑅(𝑠−1
3𝑐1

) [ ] «2» [ ]

13.5.15 – We will put to use an operation for subtraction:

𝐻−1
1 (𝑜1, 𝑜2) ≡ 𝑋(𝑅(ℳ−1

1𝑐
(𝑜1, 𝑜2)), «diff»)

13.6 Division
13.6.1 – If you look back through the subtraction machine outlined in §13.5
and the addition machine from §13.2, the only significant difference is that
is in 𝑅(𝑠1𝑐1

) and 𝑅(𝑠−1
1𝑐1

), instead of 𝐻0 being applied to the result in «sum»,
𝐻−1

0 is applied to the result in «diff» instead.

13.6.2 – We can fashion other inverses of our hyperoperations in a similar
manner. In division, we will repeatedly subtract from the given value.

13.6.3 – Let’s start with our machine specifier, which has four components
«op1», «op2», «next», and «quot»:
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𝜎−1
2𝑐

(𝑜1, 𝑜2, 𝑛, 𝑟) = ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«next», 𝑛⟩, ⟨«quot», 𝑟⟩⟩

13.6.4 – Our first state will simply convert the proxy in «quot» to «0» and
will set «next» to «op1» minus «op2». This term will keep track of the
number of times we have subtracted the divisor from the dividend:

𝑠−1
0𝑐2

= 𝜎−1
2𝑐

([ ], [ ], [ ], [⋅])

𝑅(𝑠−1
0𝑐2

) → 𝜎−1
2𝑐

(𝑠−1
0𝑐2

[op1], 𝑠−1
0𝑐2

[op2],
𝐻−1

1 (𝑠−1
0𝑐2

[op1], 𝑠−1
0𝑐2

[op2]), «0»)

13.6.5 – Next we increment «quot» so long as «next» is a valid number:

𝑠−1
2𝑐1

= 𝜎−1
2𝑐

([ ], [ ], «any-num», [ ])

𝑅(𝑠−1
2𝑐1

) → 𝜎−1
2𝑐

(𝐻−1
1 (𝑠−1

2𝑐1
[op1], 𝑠−1

2𝑐1
[op2]), 𝑠−1

2𝑐1
[op2],

𝐻−1
1 (𝑠−1

2𝑐1
[next], 𝑠−1

2𝑐1
[op2]), 𝐻0(𝑠−1

2𝑐1
[quot]))

13.6.6 – Finally, when our «next» value becomes invalid (i.e. turns to proxy),
we clean up the operation. Any remaining value in «op1» is the remainder,
while «quot» is the quotient:

𝑠−1
2𝑐2

= 𝜎−1
2𝑐

([ ], [ ], [⋅], «any-num»)

𝑅(𝑠−1
2𝑐2

) → 𝜎−1
2𝑐

(𝑠−1
2𝑐2

[op1], [ ], [ ], 𝑠−1
2𝑐2

[quot])

13.6.7 – First, let’s look at numbers that divide evenly, say 6/2:

«op1» «op2» «next» «quot»

ℳ−1
2𝑐

(«6», «2») «6» «2» [ ] [ ]

𝑅(𝑠−1
2𝑐1

) → 𝑠−1
2𝑐1

«6» «2» «4» «0»

𝑅(𝑠−1
2𝑐1

) → 𝑠−1
2𝑐1

«4» «2» «2» «1»

𝑅(𝑠−1
2𝑐1

) → 𝑠−1
2𝑐1

«2» «2» «0» «2»

𝑅(𝑠−1
2𝑐1

) → 𝑠−1
2𝑐2

«0» «2» [ ] «3»

𝑅(𝑠−1
2𝑐2

) «0» [ ] [ ] «3»
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13.6.8 – And now we can look at an example with a non-zero remainder,
10/3:

«op1» «op2» «next» «quot»

ℳ−1
2𝑐

(«10», «3») «10» «3» [ ] [ ]

𝑅(𝑠−1
0𝑐2

) → 𝑠−1
2𝑐1

«10» «3» «7» «0»

𝑅(𝑠−1
2𝑐1

) → 𝑠−1
2𝑐1

«7» «3» «4» «1»

𝑅(𝑠−1
2𝑐1

) → 𝑠−1
2𝑐1

«4» «3» «1» «2»

𝑅(𝑠−1
2𝑐1

) → 𝑠−1
2𝑐2

«1» «3» [ ] «3»

𝑅(𝑠−1
2𝑐2

) «1» [ ] [ ] «3»

13.7 Further Operations
13.7.1 – Machines to implement further hyperoperations, including tetration
and beyond, are easily imaginable and implementable following the same
patterns we’ve demonstrated in this chapter. We will revisit a generalization
of them in §22 by constructing a machine that builds other machines.

13.7.2 – The same applies to further inverse operations, but we do not treat
them further in this book.

13.7.3 – One thing to note about inverse operations is that after division,
there are two inverse operations for each hyperoperation.

13.7.4 – This is because operations past multiplication, 𝐻2, are no longer
commutative; the inverse to be applied depends on the operand of the orig-
inal operation you’d like to retrieve.

13.7.5 – For example, exponentiation has two inverses: logarithms to retrieve
the power given its base, and roots to retrieve the base given its power.



14 Binary Machines

“I see no limit to the capabilities of machines.”

— Claude Shannon

In this chapter, we construct a machine to produce our first digital numeric
representations: binary numbers.

101
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14.1 Binary Numbers
14.1.1 – We can now describe our first complex conceptual system: the
construction of a binary number from a counting number.

14.1.2 – We begin by defining our machine, ℳ𝑏, in terms of our state specifier
𝜎𝑏:

𝜎𝑏(𝑠, 𝑣, 𝑐, 𝑖, 𝑑) ≡

⟨⟨«state», 𝑠⟩, ⟨«value», 𝑣⟩, ⟨«current», 𝑐⟩, ⟨«index», 𝑖⟩, ⟨«digits», 𝑑⟩⟩

Υ({«begin», «iter», «carry», «end»}, «state»)
Υ(«digits», «sequence»)

Υ({«index», «current», «value»}, «num»)

14.1.3 – Let’s define our initial state. It is labeled as «begin» and uses [ ] in
«value» as a placeholder for the input counting number we want to convert
to binary.

𝑠0𝑏
= 𝜎𝑏(«begin», [ ], [ ], [ ], [ ])

𝑅(𝑠0𝑏
) → 𝜎𝑏(«iter», 𝑠0𝑏

[value], «0», «0», ⟨ ⟩)

14.1.4 – Now we define our iterative states. 𝑠1𝑏
will represent the «iter» state

in which the «current» digit is «0». In this circumstance, we only increment
the «current» value, referenced by «index» in «digits».

𝑠1𝑏
= 𝜎𝑏(«iter», «not-0», ̇«0», [ ], [ ])

14.1.5 – Note that a dot over a digit, such as ̇«0» in 𝑠1𝑏
, is used to force the

concepts to match the value specified exactly, as opposed to that value and
any larger values. This is described in §8.4.7.

𝑅(𝑠1𝑏
) → 𝜎𝑏(«iter», 𝐻−1

0 (𝑠1𝑏
[value]), «1»,

𝑠1𝑏
[index], 𝑇 (𝑠1𝑏

[digits], 𝑠1𝑏
[index], «1»))

14.1.6 – 𝑠2𝑏
will represent the «iter» state in which the «current» digit is

«1». In this circumstance, we set «state» to «carry» and increment «index».
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𝑠2𝑏
= 𝜎𝑏(«iter», «not-0», ̇«1», [ ], [ ])

𝑅(𝑠2𝑏
) → 𝜎𝑏(«carry», 𝑠2𝑏

[value], 𝑠2𝑏
[digits][𝐻0(𝑠2𝑏

[index])],

𝐻0(𝑠2𝑏
[index]), 𝑇 (𝑠2𝑏

[digits], 𝑠2𝑏
[index], «0»))

14.1.7 – Keep in mind that all extractions performed on «sequence»’s—
«digits» in this case as 𝑠2𝑏

[digits][𝐻0(𝑠2𝑏
[index])]—should be interpreted as

𝑋′, returning «0» when no match is found.

14.1.8 – 𝑠3𝑏
will represent the «carry» state in which the «current» digit

is «1». In this circumstance, we set the «current» value to «0», referenced
by «index» in «digits», and increment «index» (and repeat until «current»
becomes «0»).

𝑠3𝑏
= 𝜎𝑏(«carry», «not-0», ̇«1», [ ], [ ])

𝑅(𝑠3𝑏
) → 𝜎𝑏(«carry», 𝑠3𝑏

[value], 𝑠3𝑏
[digits][𝐻0(𝑠3𝑏

[index])],

𝐻0(𝑠3𝑏
[index]), 𝑇 (𝑠3𝑏

[digits], 𝑠3𝑏
[index], «0»), )

14.1.9 – 𝑠4𝑏
will represent the «carry» state in which the «current» digit is

«0». In this circumstance, we increment the «current» value to «1», and
reset «state» to «iter» and «index» to «0».

𝑠4𝑏
= 𝜎𝑏(«carry», «not-0», ̇«0», [ ], [ ])

𝑅(𝑠4𝑏
) → 𝜎𝑏(«iter», 𝐻−1

0 (𝑠2𝑏
[value]), 𝑠4𝑏

[digits][0],

«0», 𝑇 (𝑠4𝑏
[digits], 𝑠4𝑏

[index], «1»))

14.1.10 – This returns the machine to the state representation by 𝑠1𝑏
and

continues adding each digit, one by one, until «value» is decreased to «0».

14.1.11 – When our «value» is finally decreased to «0», we move to the «end»
state, with our final value in [digits].

𝑠5𝑏
= 𝜎𝑏(«iter», ̇«0», [ ], [ ], [ ])

𝑅(𝑠5𝑏
) → 𝜎𝑏(«end», [ ], [ ], [ ], 𝑠5𝑏

[digits])
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14.1.12 – This machine is more complicated than those we’ve built up to
this point.

14.1.13 – For legibility, let’s take a look at the instruction table:

𝑠 𝑅(𝑠)

𝑠0𝑏

«state» «begin» «iter»

«value» [ ] 𝑠0𝑏
[value]

«current» [ ] «0»

«index» [ ] «0»

«digits» [ ] ⟨ ⟩
𝑠1𝑏

«state» «iter» «iter»

«value» «not-0» 𝐻−1
0 (𝑠1𝑏

[value])
«current» ̇«0» «1»

«index» [ ] 𝑠1𝑏
[index]

«digits» [ ] 𝑇 (𝑠1𝑏
[digits], 𝑠1𝑏

[index], «1»)
𝑠2𝑏

«state» «iter» «carry»

«value» «not-0» 𝑠2𝑏
[value]

«current» ̇«1» 𝑠2𝑏
[digits][𝐻0(𝑠2𝑏

[index])]
«index» [ ] 𝐻0(𝑠2𝑏

[index])
«digits» [ ] 𝑇 (𝑠2𝑏

[digits], 𝑠2𝑏
[index], «0»)

𝑠3𝑏

«state» «carry» «carry»

«value» «not-0» 𝑠3𝑏
[value]

«current» ̇«1» 𝑠3𝑏
[digits][𝐻0(𝑠3𝑏

[index])]
«index» [ ] 𝐻0(𝑠3𝑏

[index])
«digits» [ ] 𝑇 (𝑠3𝑏

[digits], 𝑠3𝑏
[index], «0»)

𝑠4𝑏

«state» «carry» «iter»
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𝑠 𝑅(𝑠)

«value» «not-0» 𝐻−1
0 (𝑠4𝑏

[value])
«current» ̇«0» 𝑠4𝑏

[digits][0]
«index» [ ] «0»
«digits» [ ] 𝑇 (𝑠4𝑏

[digits], 𝑠4𝑏
[index], «1»)

𝑠5𝑏

«state» «iter» «end»

«value» «0» [ ]

«current» [ ] [ ]

«index» [ ] [ ]

«digits» [ ] 𝑠5𝑏
[digits]

14.1.14 – Below is an evaluation table of our machine calculating the binary
representation of «4».

14.1.15 – Note that we have shortened our representation of «digits» to omit
the index, and to show the value with the largest «index» first, in order to
make it read like the standard representation of a binary number.

«state» «value» «current» «index» «digits»

«begin» «4» [ ] [ ] [ ]

𝑅(𝑠0𝑏
) → 𝑠1𝑏

«iter» «4» «0» «0» ⟨ ⟩
𝑅(𝑠1𝑏

) → 𝑠2𝑏
«iter» «3» «1» «0» ⟨«1»⟩

𝑅(𝑠2𝑏
) → 𝑠4𝑏

«carry» «3» «0» «1» ⟨«0»⟩
𝑅(𝑠4𝑏

) → 𝑠1𝑏
«iter» «2» «0» «0» ⟨«1», «0»⟩

𝑅(𝑠1𝑏
) → 𝑠2𝑏

«iter» «1» «1» «0» ⟨«1», «1»⟩
𝑅(𝑠2𝑏

) → 𝑠3𝑏
«carry» «1» «0» «1» ⟨«1», «0»⟩

𝑅(𝑠3𝑏
) → 𝑠4𝑏

«carry» «1» «0» «2» ⟨«0», «0»⟩
𝑅(𝑠4𝑏

) → 𝑠5𝑏
«iter» «0» «0» «0» ⟨«1», «0», «0»⟩
«end» [ ] [ ] [ ] ⟨«1», «0», «0»⟩
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Figure 29: Binary Machine Illustrated: This graphic illustrates the signifi-
cant states of the machine ℳ𝑏(«4»). The bolded square indicates the «cur-
rent» value and «index». Notice the «carry» pattern that overwrites «1»’s
with «0»’s until the first «0» is found.
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14.1.16 – This examples shows, step by step, each transformation in
the machine’s state from 𝑠0𝑏

through the final result, with «digits» as
⟨«1», «0», «0»⟩, the binary representation of «4».

14.1.17 – As a shorthand, we can represent binary numbers with a subscript
𝑏, e.g. «4𝑏».

14.2 Binary Successor Machine
14.2.1 – Now we can define a simple machine that gives the successor of a
binary number:

ℳ0𝑏
(𝑑) ≡ ℳ𝑏(«1», 𝑑)

14.2.2 – The above machine sets the initial state of the machine to the digits
represented by 𝑑, and adds «1» to the resulting value.

14.2.3 – For convenience, we’ll define an operation to make utilization of the
previous machine easier:

𝐻0𝑏
(𝑑) ≡ 𝑅(ℳ0𝑏

(𝑑))[digits]

14.2.4 – Notice we use operation 𝑅 to produce the resultant state and [digits]
to extract the digits from the resulting object.

14.2.5 – In action:

𝐻0𝑏
(⟨«0»⟩) → ⟨«1»⟩

𝐻0𝑏
(⟨«1»⟩) → ⟨«1», «0»⟩

𝐻0𝑏
(⟨«1», «0», «1»⟩) → ⟨«1», «1», «0»⟩

14.3 Binary Anti-Successor Machine
14.3.1 – The antisuccessor operation 𝐻−1

0 , defined in §11.3, makes promi-
nent appearances in many cognitive machines, including the arithmetical
machines we defined in §13.2, §13.3, and §13.4.

14.3.2 – We will need a similar operation in order to create analogous arith-
metical machines in binary.

14.3.3 – Note that the following machine is designed to make the process
most clear, and can be optimized fairly trivially.
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14.3.4 – First, we define the state specifier for our binary anti-successor
machine, 𝜎−1

0𝑏
:

𝜎−1
0𝑏

(𝑠, 𝑐, 𝑖, 𝑑) ≡ ⟨⟨«state», 𝑠⟩, ⟨«current», 𝑐⟩, ⟨«index», 𝑖⟩, ⟨«digits», 𝑑⟩⟩

Υ({«begin», «iter», «carry», «end»}, «state»)
Υ(«digits», «sequence»)

Υ({«index», «current»}, «num»)

14.3.5 – Our first state initializes «current» to the least significant digit in
«digits» and «index» to «0».

𝑠−1
0𝑏0

= 𝜎−1
0𝑏

(«begin», [ ], [ ], [ ])

𝑅(𝑠−1
0𝑏0

) → 𝜎−1
0𝑏

(«iter», 𝑠−1
0𝑏0

[digits][0], «0», 𝑠−1
0𝑏0

[digits])

14.3.6 – If «current» at «index» «0» is equal to «1», change it to «0» and
«end»:

𝑠−1
1𝑏0

= 𝜎−1
0𝑏

(«iter», «1», «0», [ ])

𝑅(𝑠−1
1𝑏0

) → 𝜎−1
0𝑏

(«end», [ ], [ ], 𝑇 (𝑠−1
1𝑏0

[digits], «0», «0»))

14.3.7 – Otherwise we «iter» up the tree so long as «current» is equal to
«0»:

𝑠−1
2𝑏0

= 𝜎−1
0𝑏

(«iter», ̇«0», [ ], [ ])

𝑅(𝑠−1
2𝑏0

) → 𝜎−1
0𝑏

(«iter», 𝑠−1
2𝑏0

[digits][𝐻0(𝑠−1
2𝑏0

[index]])],
𝐻0(𝑠−1

2𝑏0
[index]), 𝑠−1

2𝑏0
[digits])

14.3.8 – When a «1» is found we change it to «0» via operation 𝑇 , then
switch to «carry»:

𝑠−1
3𝑏0

= 𝜎−1
0𝑏

(«iter», «1», [ ], [ ])

𝑅(𝑠−1
3𝑏0

) → 𝜎−1
0𝑏

(«carry», [ ], 𝐻−1
0 (𝑠−1

3𝑏0
[index]),

𝑇 (𝑠−1
3𝑏0

[digits], 𝑠−1
3𝑏0

[index], «0»))
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Figure 30: Binary Machine State Graph: Recall that 𝑠1𝑏
and 𝑠2𝑏

are our
«iter» states, depending on whether the «current» digit is «0» or «1». 𝑠3𝑏
carries until a «0» is encountered, and 𝑠4𝑏

sets a carried «1» digit, and resets
to 𝑠1𝑏

.

Figure 31: Binary Anti-Successor Machine State Graph: In this machine,
𝑠−1

1𝑏0
shortcuts the mechanism if the first digit is «1». Otherwise, 𝑠−1

2𝑏0
will

keep incrementing which digit is «current» until it finds a «1». 𝑠−1
3𝑏0

changes
the «1» to «0», and 𝑠−1

4𝑏0
traverses back down the digits, turning each «0»

to «1» along the way.
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14.3.9 – We then traverse «index» back down to «0», writing «1»’s along
the way:

𝑠−1
4𝑏0

= 𝜎−1
0𝑏

(«carry», [ ], «not-0», [ ])

𝑅(𝑠−1
4𝑏0

) → 𝜎−1
0𝑏

(«carry», [ ], 𝐻−1
0 (𝑠−1

4𝑏0
[index]),

𝑇 (𝑠−1
4𝑏0

[digits], 𝑠−1
4𝑏0

[index], «1»))

14.3.10 – When reach «index» = «0», we write a final «1» and switch to
«end»:

𝑠−1
5𝑏0

= 𝜎−1
0𝑏

(«carry», [ ], ̇«0», [ ])

𝑅(𝑠−1
5𝑏0

) → 𝜎−1
0𝑏

(«end», [ ], [ ], 𝑇 (𝑠−1
5𝑏0

[digits], «0», «1»))

14.3.11 – Let’s demonstrate:

«state» «current» «index» «digits»

«begin» [ ] [ ] ⟨«1», «0», «0»⟩
𝑅(𝑠−1

0𝑏0
) → 𝑠−1

2𝑏0
«iter» «0» «0» ⟨«1», «0», «0»⟩

𝑅(𝑠−1
2𝑏0

) → 𝑠−1
3𝑏0

«iter» «0» «1» ⟨«1», «0», «0»⟩
𝑅(𝑠−1

3𝑏0
) → 𝑠−1

4𝑏0
«iter» «1» «2» ⟨«1», «0», «0»⟩

𝑅(𝑠−1
4𝑏0

) → 𝑠−1
4𝑏0

«carry» «0» «1» ⟨«0», «0», «0»⟩
𝑅(𝑠−1

4𝑏0
) → 𝑠−1

5𝑏0
«carry» «0» «0» ⟨«0», «1», «0»⟩

𝑅(𝑠−1
5𝑏0

) → «end» [ ] [ ] ⟨«0», «1», «1»⟩

14.3.12 – And we can verify that the given 1002 = 4 is one greater than the
resulting 0112 = 3.

14.3.13 – Now let’s define our machine specifier:

ℳ−1
0𝑏

(𝑛) ≡ 𝜎−1
0𝑏

(«begin», [ ], [ ], 𝑛)

14.3.14 – And our operation, 𝐻−1
0𝑏

(𝑛):

𝐻−1
0𝑏

(𝑛) ≡ 𝑋(𝑅(ℳ−1
0𝑏

(𝑛)), «digits»)
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Figure 32: Binary Anti-Successor Machine Illustrated: This graphic illus-
trated the significant states of the machine ℳ−1

0𝑏 («4»). Notice that we incre-
ment «index» until we find the first «1». We change that digit to «0» and
write «1»’s back down the sequence.
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14.4 Binary Addition
14.4.1 – Similarly to §13, we can also define arithmetical operations on binary
numbers. We do this by using essentially the same structure, but with our
binary successor and anti-successor operations, 𝐻0𝑏

and 𝐻−1
0𝑏

, instead of 𝐻0
and 𝐻−1

0 .

14.4.2 – Here we will demonstrate in terms of addition, but the same princi-
ples apply to any other arithmetical operation.

14.4.3 – Let’s recall our counting addition state specifier from §13.2.2:

𝜎1𝑐
(𝑜1, 𝑜2, 𝑟) = ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«sum», 𝑟⟩⟩

14.4.4 – Our specifier will be identical:

𝜎1𝑏
(𝑜1, 𝑜2, 𝑟) = ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«sum», 𝑟⟩⟩

14.4.5 – Recall the first counting addition machine state from §13.2.3:

𝑠0𝑐1
= 𝜎1𝑐

([ ], [ ], [⋅])

𝑅(𝑠0𝑐1
) → 𝜎1𝑐

([ ], 𝑠0𝑐1
[op2], 𝑠0𝑐1

[op1])

14.4.6 – Ours will again be nearly identical:

𝑠1𝑏0
= 𝜎1𝑏

([ ], [ ], [⋅])

𝑅(𝑠1𝑏0
) → 𝜎1𝑏

([ ], 𝑠1𝑏0
[op2], 𝑠1𝑏0

[op1])

14.4.7 – Now let’s look at the second state from the counting addition ma-
chine from §13.2.4:

𝑠1𝑐1
= 𝜎1𝑐

([⋅], «not-0», [ ])

𝑅(𝑠1𝑐1
) → 𝜎1𝑐

([ ], 𝐻−1
0 (𝑠1𝑐1

[op2]), 𝐻0(𝑠1𝑐1
[sum]))

14.4.8 – There are a few terms in these formulae that need to be replaced
so that they are amenable to use with binary numbers.
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14.4.9 – To start, we need to replace «not-0» with ⟨⟨« ̄0», «1»⟩⟩, the binary
equivalent of «1».14

14.4.10 – We also need to replace all occurrences of 𝐻0 and 𝐻−1
0 with 𝐻0𝑏

and 𝐻−1
0𝑏

, respectively.

14.4.11 – Applying those substitutions to the formula for the second state,
we gather:

𝑠1𝑏1
= 𝜎1𝑏

([⋅], ⟨⟨« ̄0», «1»⟩⟩, [ ])

𝑅(𝑠1𝑏1
) → 𝜎1𝑏

([ ], 𝐻−1
0𝑏

(𝑠1𝑏1
[op2]), 𝐻0𝑏

(𝑠1𝑏1
[sum]))

14.4.12 – For the third state from §13.2.6, we only need to substitute
⟨⟨« ̄0», ̇«0»⟩⟩ for its counting equivalent ̇«0»:

𝑠2𝑏1
= 𝜎1𝑏

([⋅], ⟨⟨« ̄0», ̇«0»⟩⟩, [ ])

𝑅(𝑠2𝑏1
) → 𝜎1𝑏

([ ], [ ], 𝑠2𝑏1
[sum])

14.4.13 – Let’s demonstrate with our example from §13.2.12, 4 + 3 = 7:

«op1» «op2» «sum»

⟨«1», «0», «0»⟩ ⟨«0», «1», «1»⟩ [ ]

𝑅(𝑠1𝑏0
) → 𝑠1𝑏1

[ ] ⟨«0», «1», «1»⟩ ⟨«1», «0», «0»⟩
𝑅(𝑠1𝑏1

) → 𝑠1𝑏1
[ ] ⟨«0», «1», «0»⟩ ⟨«1», «0», «1»⟩

𝑅(𝑠1𝑏1
) → 𝑠1𝑏1

[ ] ⟨«0», «0», «1»⟩ ⟨«1», «1», «0»⟩
𝑅(𝑠1𝑏1

) → 𝑠2𝑏1
[ ] ⟨«0», «0», «0»⟩ ⟨«1», «1», «1»⟩

𝑅(𝑠2𝑏1
) [ ] [ ] ⟨«1», «1», «1»⟩

14.4.14 – And, of course, 1112 = 7.

14.4.15 – We can easily imagine any other conversion of arithmetical hy-
peroperations from counting numbers to binary numbers following a similar
procedure.

14From §12.5.8, «not-0» ≡ «1».
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14.5 Binary to Counting Number Conversion
14.5.1 – Using the mechanisms we’ve developed so far, we can also create a
machine ℳ−1

𝑏 , which takes a binary representation and converts it back to
a counting number.

14.5.2 – First, our specifier:

𝜎𝑏𝑐(𝑑, 𝑙, 𝑖, 𝑣) ≡ ⟨⟨«digits», 𝑑⟩, ⟨«length», 𝑙⟩, ⟨«index», 𝑖⟩, ⟨«value», 𝑣⟩⟩

14.5.3 – We need to include a «length», because a sequence does not contain
information about the last place that a «1» value is held. There are probably
better ways to represent this within the «digits» concept itself, but this
structure will serve for our purposes.

14.5.4 – Our first state sets «index» to («length» − 1)—because the «index»
is zero-indexed—and sets our initial value to «0»:

𝑠0𝑏𝑐
= 𝜎𝑏𝑐([ ], [ ], [ ], [⋅])

𝑅(𝑠0𝑏𝑐
) → 𝜎𝑏𝑐(𝑠0𝑏𝑐

[digits], 𝑠0𝑏𝑐
[length], 𝐻−1

0 (𝑠0𝑏𝑐
[length]), «0»)

14.5.5 – Our second state takes the digit at «index» and multiplies it by
2«index» to get the value of the position currently indicated by «index». It
adds the result to «value», and decrements «index».

𝑠1𝑏𝑐
= 𝜎𝑏𝑐([ ], [ ], «any-num», «any-num»)

𝑅(𝑠1𝑏𝑐
) → 𝜎𝑏𝑐(𝑠1𝑏𝑐

[digits], 𝑠1𝑏𝑐
[length], 𝐻−1

0 (𝑠1𝑏𝑐
[index]),

𝐻1𝑐
(𝑠1𝑏𝑐

[value], 𝐻2𝑐
(𝑋(𝑠1𝑏𝑐

[digits], 𝑠1𝑏𝑐
[index]), 𝐻3𝑐

(«2», 𝑠1𝑏𝑐
[index]))))

14.5.6 – Note the usages of 𝐻3𝑐
and 𝐻2𝑐

.

14.5.7 – In our third state, we clean up the result:

𝑠2𝑏𝑐
= 𝜎𝑏𝑐([ ], [ ], [⋅], «any-num»)

𝑅(𝑠2𝑏𝑐
) → 𝜎𝑏𝑐([ ], [ ], [ ], 𝑠2𝑏𝑐

[value])

14.5.8 – Finally, our machine specifier:

ℳ𝑏𝑐(𝑑, 𝑙) ≡ 𝜎𝑏𝑐(𝑑, 𝑙, [ ], [ ])
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14.5.9 – Let’s look at an example, ℳ𝑏𝑐(⟨«1», «0», «1»⟩, «3»):

«digits» «length» «index» «value»

ℳ𝑏𝑐(⟨«1», «0», «1»⟩, «3») ⟨«1», «0», «1»⟩ «3» [ ] [ ]

𝑅(𝑠0𝑏𝑐
) → 𝑅(𝑠1𝑏𝑐

) ⟨«1», «0», «1»⟩ «3» «2» «0»

𝑅(𝑠1𝑏𝑐
) → 𝑅(𝑠1𝑏𝑐

) ⟨«1», «0», «1»⟩ «3» «2» «4»

𝑅(𝑠1𝑏𝑐
) → 𝑅(𝑠1𝑏𝑐

) ⟨«1», «0», «1»⟩ «3» «1» «4»

𝑅(𝑠1𝑏𝑐
) → 𝑅(𝑠1𝑏𝑐

) ⟨«1», «0», «1»⟩ «3» «0» «5»

𝑅(𝑠1𝑏𝑐
) → 𝑅(𝑠2𝑏𝑐

) ⟨«1», «0», «1»⟩ «3» [ ] «5»

𝑅(𝑠2𝑏𝑐
) [ ] [ ] [ ] «5»
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15 Decimal Machines

“Mathematics is the language with which God has written the
universe.”

— Galileo Galilei

It would seem imprudent to leave out our most common form of numeric
representation: decimal numbers.
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15.1 Decimal Numbers
15.1.1 – Decimal representations will largely resemble our binary scheme.

15.1.2 – In fact, our state specifier will be nearly identical to 𝜎𝑏, defined in
§14.1.2:

𝜎𝑑(𝑠, 𝑣, 𝑐, 𝑖, 𝑑) ≡

⟨⟨«state», 𝑠⟩, ⟨«value», 𝑣⟩, ⟨«current», 𝑐⟩, ⟨«index», 𝑖⟩, ⟨«digits», 𝑑⟩⟩

15.1.3 – Our first state initiates our conversion:

𝑠0𝑑
= 𝜎𝑑(«begin», [ ], [ ], [ ], [ ])

𝑅(𝑠0𝑑
) → 𝜎𝑑(«iter», 𝑠0𝑑

[value], «0», «0», ⟨ ⟩)

15.1.4 – 𝑠1𝑑
will represent the «iter» state in which «current» = «9». In

this circumstance, set the «current» value to «0», increment «index», and
set the state to «carry».

𝑠1𝑑
= 𝜎𝑑(«iter», «not-0», «9», [ ], [ ])

𝑅(𝑠1𝑑
) → 𝜎𝑑(«carry», 𝑠1𝑑

[value], 𝑠1𝑑
[digits][𝐻0(𝑠1𝑑

[index])],

𝐻0(𝑠1𝑑
[index]), 𝑇 (𝑠1𝑑

[digits], 𝑠1𝑑
[index], «0»))

15.1.5 – 𝑠2𝑑
will represent the «iter» state in which «current» < «9». This

can be represented with «any-num», since «9» will match 𝑠1𝑑
. In this cir-

cumstance, we only increment the «current» value, referenced by «index»
in «digits».

𝑠2𝑑
= 𝜎𝑑(«iter», «not-0», «any-num», [ ], [ ])

𝑅(𝑠2𝑑
) → 𝜎𝑑(«iter», 𝐻−1

0 (𝑠2𝑑
[value]), 𝐻0(𝑠2𝑑

[current]),

𝑠2𝑑
[index], 𝑇 (𝑠2𝑑

[digits], 𝑠2𝑑
[index], 𝐻0(𝑠2𝑑

[current])))

15.1.6 – 𝑠3𝑑
will represent the «carry» state in which the «current» digit is

«9». In this circumstance, we set the «current» value to «0», referenced by



15.1 DECIMAL NUMBERS 119

«index» in «digits», and increment «index» (and repeat until «current» <
«9»).

𝑠3𝑑
= 𝜎𝑑(«carry», «not-0», ̇«9», [ ], [ ])

𝑅(𝑠3𝑑
) → 𝜎𝑑(«carry», 𝑠3𝑑

[value], 𝑠3𝑑
[digits][𝐻0(𝑠3𝑑

[index])],

𝐻0(𝑠3𝑑
[index]), 𝑇 (𝑠3𝑑

[digits], 𝑠3𝑑
[index], «0»), )

15.1.7 – 𝑠4𝑑
will represent the «carry» state in which the «current» digit is

less than «9». In this circumstance, we increment the «current» value, and
reset «state» to «iter» and «index» to «0».

𝑠4𝑑
= 𝜎𝑏(«carry», «not-0», «any-num», [ ], [ ])

𝑅(𝑠4𝑑
) → 𝜎𝑏(«iter», 𝐻−1

0 (𝑠4𝑑
[value]), 𝑠4𝑑

[digits][«0»],

«0», 𝑇 (𝑠4𝑑
[digits], 𝑠4𝑑

[index], 𝐻0(𝑠4𝑑
[digits][index])))

15.1.8 – This returns the machine to the state representation by 𝑠1𝑑
and

continues adding each digit, until «value» is decreased to «0», exactly the
same as ℳ𝑏.

15.1.9 – We «end» with our final value in [digits].

𝑠5𝑑
= 𝜎𝑑(«iter», ̇«0», [ ], [ ], [ ])

𝑅(𝑠5𝑑
) → 𝜎𝑑(«end», [ ], [ ], [ ], 𝑠5𝑑

[digits])

15.1.10 – And here is our machine specifier:

ℳ𝑑(𝑛) ≡ 𝜎𝑑(«begin», 𝑛, [ ], [ ], [ ])
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15.2 Example
15.2.1 – Let’s show our conversion of «17» as an example:

«state» «value» «current» «index» «digits»

ℳ𝑑(«17») «begin» «17» [ ] [ ] [ ]

𝑅(𝑠0𝑑
) → 𝑠2𝑑

«iter» «17» «0» «0» ⟨ ⟩
𝑅(𝑠2𝑑

) → 𝑠2𝑑
«iter» «16» «1» «0» ⟨«1»⟩

𝑅(𝑠2𝑑
) → 𝑠2𝑑

«iter» «15» «2» «0» ⟨«2»⟩
𝑅(𝑠2𝑑

) → 𝑠2𝑑
«iter» «14» «3» «0» ⟨«3»⟩

𝑅(𝑠2𝑑
) → 𝑠2𝑑

«iter» «13» «4» «0» ⟨«4»⟩
𝑅(𝑠2𝑑

) → 𝑠2𝑑
«iter» «12» «5» «0» ⟨«5»⟩

𝑅(𝑠2𝑑
) → 𝑠2𝑑

«iter» «11» «6» «0» ⟨«6»⟩
𝑅(𝑠2𝑑

) → 𝑠2𝑑
«iter» «10» «7» «0» ⟨«7»⟩

𝑅(𝑠2𝑑
) → 𝑠2𝑑

«iter» «9» «8» «0» ⟨«8»⟩
𝑅(𝑠2𝑑

) → 𝑠1𝑑
«iter» «8» «9» «0» ⟨«9»⟩

𝑅(𝑠1𝑑
) → 𝑠4𝑑

«carry» «8» «0» «1» ⟨«0»⟩
𝑅(𝑠4𝑑

) → 𝑠2𝑑
«iter» «7» «0» «0» ⟨«1», «0»⟩

𝑅(𝑠2𝑑
) → 𝑠2𝑑

«iter» «6» «1» «0» ⟨«1», «1»⟩
𝑅(𝑠2𝑑

) → 𝑠2𝑑
«iter» «5» «2» «0» ⟨«1», «2»⟩

𝑅(𝑠2𝑑
) → 𝑠2𝑑

«iter» «4» «3» «0» ⟨«1», «3»⟩
𝑅(𝑠2𝑑

) → 𝑠2𝑑
«iter» «3» «4» «0» ⟨«1», «4»⟩

𝑅(𝑠2𝑑
) → 𝑠2𝑑

«iter» «2» «5» «0» ⟨«1», «5»⟩
𝑅(𝑠2𝑑

) → 𝑠2𝑑
«iter» «1» «6» «0» ⟨«1», «6»⟩

𝑅(𝑠2𝑑
) → 𝑠2𝑑

«iter» «0» «7» «0» ⟨«1», «7»⟩
𝑅(𝑠2𝑑

) → 𝑠5𝑑
«end» [ ] [ ] [ ] ⟨«1», «7»⟩

15.2.2 – Following the example of the binary representations, it is possible
to construct other operations in a similar manner.



16 Numerons

“The nervous system and the automatic machine are fundamen-
tally alike in that they are devices, which make decisions on the
basis of decisions they made in the past.”

— Norbert Wiener

Though the term is used with different meanings, we will take the word
numeron to indicate any representation of a quantity or magnitude in the
mind or brain, from the level of molecules to complex conceptual machines.
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16.1 Simple Representations of Quantity
16.1.1 – Recent experiments have indicated that even an individual neuron
can learn some sense of quantity, in the form of predicting responses to
intervals between two related stimuli.15

16.1.2 – This gives an indication that the smallest quantity-capable repre-
sentations in the brain are sub-neural.

16.1.3 – It is an interesting exercise to think about the simplest possible
forms of tracking and adapting to new intervals as physical automata.

16.2 Molecular Chains
16.2.1 – One extremely simple form of representation for the interval could
be a simple chain of molecules. The exact type or form of these molecules
is not important except that they can be chained together—and that a
longer chain represents a longer interval (or quantity), while a shorter chain
represents a short interval (or quantity).

16.2.2 – We can imagine some kind of molecular automaton that at any
point in time holds itself to a specific point in the chain, representing its
location within the interval.

16.2.3 – If the amount of time it takes the automaton to move from one
link in the chain to another is roughly equal for each segment of the chain,
the respective intervals between two chains of a similar length would also be
roughly equal.

16.2.4 – So if we have molecular chains of the appropriate length available,
the interval from the time that the automaton would begin traversing the
chain to the time that the automaton would complete the chain would be
roughly equivalent to the interval between the first and second phenomena.

16.2.5 – If the traversal process was triggered by the first phenomena, which
we will call 𝐴, it would end at approximately the time of the second phe-
nomena, phenomena B—which would allow it to trigger a response at near
the same time as the second phenomena.

16.3 Learning Intervals
16.3.1 – This system of molecular chains and automata gives us a method
of representing and delaying a reaction in roughly the same interval as some
outside phenomena.

15See Johansson et al. (2014).
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Figure 33: Numeron Chain Shrinking: When the interval between 𝐴 and 𝐵
is less than that indicated by chain 𝑐, the resulting chain 𝑑 will be shorter.
The next repetition, chain 𝑑 will produce the action at the end of the interval
more quickly than chain 𝑐 did.
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Figure 34: Numeron Chain Growing: In exact contrast to the previous
scenario, when the interval between 𝐴 and 𝐵 is greater than that indicated
by chain 𝑐, the resulting chain 𝑑 will be longer. Chain 𝑑 will produce the
action at the end of the interval less quickly than chain 𝑐 did.
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16.3.2 – But we still need a way for the system to learn new intervals—again,
trying to draw the simplest possible explanation.

16.3.3 – Let’s imagine that the automaton not only begins traversing existing
molecular chains when A occurs, but it will also begin constructing a new
molecular chain, chain d at the same rate that it traverses an existing chain,
which we will call chain c.

16.3.4 – If B occurs before chain c is traversed, the automaton halts the
construction of the new chain d such that it is shorter than c—meaning
that the next time when d is traversed, the interval will accordingly be
shortened.

16.3.5 – If B occurs after chain c is traversed, the automaton will continue
building the new chain d longer than c. Accordingly, the interval for pro-
cessing d will be shorter than c.

16.3.6 – It would seem pretty simplistic to think that this is actually what is
occurring in a cell. But one could imagine that there are thousands or more
of these chains and automata, from which the stochastic element of when
an automaton encounters a chain, etc., such a simple mechanism begins to
seem more plausible.

16.4 Counting Numbers
16.4.1 – In our conceptual system, we represent counting numbers as discrete
chains of composed concepts.

16.4.2 – This system does have many properties that make it plausible as
an actual counting system.

16.4.3 – Without the aid of digital systems, counting can only occur either
to the extent that subitization or some other direct representation can be
made, or else by relating smaller quantities. In the second case, an example
might be “okay there are twice as many of this amount as that amount,”
where that amount is four. Further, we could see the concept of twice as
many as that amount plus one, etc. We can begin to see the seeds of a system
evolving that represents larger quantities in terms of smaller quantities as
in Roman numerals (instead of 30, there are three tens).

16.4.4 – These structures constitute simple conceptual mechanisms for con-
veying quantities.

16.5 Digital Numbers
16.5.1 – The digital number has the property of being indefinitely recursive,
such that with a single, finite conceptual machine we can represent arbitrary
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quantities.

16.5.2 – The digital numbers we are most familiar with are of course decimal
numbers, but there are alternate digital systems such as binary numbers.

16.5.3 – There are even extreme examples, such as the Babylonians, who
used a base-60 system that had 60 different digits (and therefore 60 different
concepts). But the idea is the same as binary or decimal.

16.5.4 – In a digital system, only a concept for each of the digits is required,
along with a rule for changing the amount that is represented based on the
digit’s place in the number.

16.5.5 – In practice we likely have separate concepts that are independent of
our digital representations for certain numbers we are more familiar with.

16.5.6 – For example, we may have a concept as «four» that has relations
to «4𝑐», «4𝑏», «4𝑑», as well as certain patterns that we can subitize as four,
the actual numeral “4,” etc.

16.5.7 – Our mind puts those alternate representations to use based on the
needs of a given scenario, sometimes in combination.

16.5.8 – For example, when we add, we are not usually following the exact
rules of an addition machine like we’ve outlined in preceding chapters.

16.5.9 – For example, if you ask me to calculate 27 + 94, I first know that
the last digit will be «1» as a result of a pattern that applies to the specific
digits «7» and «4» and that I will need to add «1» to the resulting tens
digit of my calculation. Then I add «2» and «9» to get «11» (again pattern
recognition completely due to the digits) add a «0» to the end because I
know it’s the tens place to get «110», add the carried «1» from the addition
of «7» and «4» to the tens place to get «120», and finally place the last digit
«1» into the result to get «121».

16.5.10 – Nonetheless, the decimal representation gives us a sense of what
this quantity means outside of a counting context. I know «121» means 1
“hundred,” 2 “tens,” and 1.

16.5.11 – When I need to exploit my actual digital conceptual machines, I
can—as when I mechanically add two much larger numbers together, say
«938365832» and «735549631».

16.5.12 – These conceptual machines are not as reliable as ingrained pattern
recognition, but it allows us to expand our numerical capacity beyond what
it would otherwise be.
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16.6 Intuitive Numbers
16.6.1 – I suspect that most of us have a type of numerical representation
that I call an intuitive number that we use for estimating and working with
general quantities.

16.6.2 – The information contained in an intuitive number is a different for
each person, but let me illustrate the type of structure I’m talking about
first.

𝜈𝑖(𝑠, 𝑑, 𝑓𝑛, 𝑓𝑑, 𝑜𝑚) = ⟨⟨«sign», 𝑠⟩, ⟨«decimal», 𝑑⟩, ⟨«numerator», 𝑓𝑛⟩,
⟨«denominator», 𝑓𝑑⟩, ⟨«magnitude», 𝑜𝑚⟩⟩

16.6.3 – This type of representation can represent a sign (i.e. «positive» or
«negative»), a decimal representation of the whole number, a representation
of the «numerator» and «denominator» of the fractional part—both also
decimal numbers—and a «magnitude».

16.6.4 – The «magnitude» ties the other portions of the representation back
to what it is representing. A magnitude can either be some other numeric
representation—such as «thousands» or «tens»—or it can be a more con-
crete magnitude, such as «apples».

16.6.5 – In this way, when a numeric «magnitude» is used, it makes our
intuitive numbers function much like scientific numbers.

16.6.6 – And there might be further representations that vary person to
person. So if someone works frequently with complex numbers, there may
be an additional «imaginary» component, for example.
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17 Language

“Since language is clearly a computational system, the relevant
laws of nature should include (and perhaps be limited to)
principles of efficient computation.”

— Noam Chomsky

Nearly inseparable, language is the most critical capability to understand
our conceptual faculties. We now take a closer examination of how the
human system of symbolic conceptualization operates through language.
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17.1 Grammar & Relationships
17.1.1 – The human language faculty maps our conceptual system onto some
form of symbolic encoding, and turns complex conceptual relationships into
simpler contextual, hierarchical, or order-based relationships.

17.1.2 – The rules for how symbols in a language are combined are called its
grammar.

17.1.3 – The exact nature of the combinations determines what relationships
the concepts represented by each symbol hold with each other.

17.1.4 – Languages are tools for manipulating and representing relationships
between concepts, along with conceptual machines for transforming concep-
tual structures to and from symbolic representations.

17.1.5 – We will call the conceptual machine that takes a conceptual struc-
ture and turns it into a linguistic representation ℳ𝑆.

17.1.6 – Although the mechanical structure of ℳ𝑆 is far too complex to
explore in this book, we can show its operation by way of an example, with
some further linguistic structure than we’ve shown to this point:

«draw» = ⟨[artist], [subject], … ⟩

𝑠 = ⟨⟨«artist», «Bob»⟩, ⟨«tense», «past-tense»⟩,
⟨«subject», ⟨«Mona Lisa», «definite article»⟩⟩, … ⟩

𝑅(ℳ𝑆(𝑠)) → «Bob drew the Mona Lisa»

17.1.7 – We can define operation 𝑆, symbolize to enact this machine:

𝑆(𝑎) ≡ 𝑅(ℳ𝑆(𝑎))

17.1.8 – We also can imagine an inverse machine ℳ−1
𝑆 which takes a concept

of a linguistic expression and retrieves its conceptual structure.

17.1.9 – ℳ−1
𝑆 , also shown by example:

𝑅(ℳ−1
𝑆 («Bob drew the Mona Lisa»)) → 𝑠

17.1.10 – And its operation 𝑆−1:

𝑆−1(𝑎) ≡ 𝑅(ℳ−1
𝑆 (𝑎))
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17.2 Human Language
17.2.1 – The most common symbolic system used in human beings is speech.
But others, such as writing and sign language, are also common.

17.2.2 – When the speech system of symbolization is available (i.e. to those
who are not born deaf), it takes primacy.

17.2.3 – When we read, we “hear” the words in our head.

17.2.4 – We cannot read without “hearing” also. Try reading this sentence
without “saying the words” to yourself also.

17.2.5 – We sometimes modulate our breathing patterns or even manipulate
our larynx as if we were speaking the words ourselves. We can almost “feel”
ourselves speaking.

17.2.6 – Below we illustrate the general process using our operations defined
previously. The writing evokes “sounds” of the words in our mind. The
sounds are further interpreted to their associated concepts, and by recoun-
tation can give the sensation of speaking.

𝐼({‹writing›}) → «sound»

𝑆−1(«sound») → 𝑎
𝑅(«sound») → «sensation of speaking»

17.2.7 – This primacy of spoken forms of language is not surprising, because
human beings seem to use spoken language in their natural environment.

17.2.8 – What is more surprising is the ease with which other modes of
symbolization are adapted.

17.3 Language & Conceptualization
17.3.1 – Many of the most-developed countries in the world approach a 100%
literacy rate.16 But how can this be?

17.3.2 – Writing is only a few thousand years old, and it developed several
times independently.17 Our species did not have time for natural selection
to select for reading ability.

17.3.3 – Groups of deaf children have also been observed to invent ad hoc
sign languages nearly immediately when none was available to be taught to
them.18

16Roser & Ortiz-Ospina (2013).
17Clayton (2019).
18Senghas & Coppola (2001).
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17.3.4 – These facts gives us a hint as to what language is. Language is a
system for mapping concepts into a system of symbolization.

17.3.5 – The form of symbolization has a grammar—a system of ordering
or other attributes that produce a hierarchical conceptual structure—and a
vocabulary—a set of words that map to concepts.

17.3.6 – There are two systems that are distinct but intertwined—the system
of concepts and their relations to form structures and mechanisms—and
the linguistic system of vocabulary and grammar, which determines the
representation of those concepts in the symbolic form.19

17.3.7 – The system of vocabulary and grammar vary depending on the
specific language in use. But the general conceptual system is almost entirely
the same. Although the structure and vocabulary of a language can shape
and limit what we say to some extent, most natural languages give wide
latitude to express nearly equivalent concepts.20

17.3.8 – Being deaf can alter the human brain much more significantly than
being blind. In deaf people, if they are taught to sign early, there is no
significant difference in cognitive abilities in comparison to the general pop-
ulation. But if a young deaf child is not taught to sign, either because it is
not discovered that they are deaf or because sign education is not available
to them, nearly every cognitive aspect of the mind is dampened.21

17.3.9 – This shows that our symbolization faculty operates as a catalyst for
the conceptual system.

17.3.10 – We can understand why this is. When given a system for sym-
bolization, we gain the ability to quickly tag a label onto a concept and
then manipulate it without holding all details of the concept in our working
memory.

17.3.11 – Concepts allow for perceptions to be recalled for manipulation;
language allows for concepts to be recalled and manipulated in the same
way.

17.3.12 – For example, to a chess master, you only need to tell them to
picture “the Philador position.” To a less-experienced player you will need
to explain, “black’s king is on f4, his pawn is on e4,” etc. There will be
several pieces of information they have to hold in their head, while the
master just recalls «the Philador position».22

17.3.13 – The master can then extend this trick outside the Philador position,
by thinking things like “the Philador position, but the king is on f5.”

19Dufour & Kroll (1995).
20Ibid.
21Hall (2017).
22Howell (1997).
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Figure 35: Philador Position: The Philador position is an endgame position
well-known in chess theory.

17.3.14 – The chess master has a concept, «the Philador position», that the
novice doesn’t possess. And he has a convenient label, the words “Philador
position” to express it in.

17.3.15 – Words themselves may be components of a concept, and are always
relations to their concepts.

17.3.16 – Multilingual patients with Alzheimer’s tend to retain higher levels
of cognition that those who don’t.23 This is presumably because as certain
relations between concepts are severed, say between the concept «chair» and
the concept of the English word “chair,” others are still intact, such as the
connection between the concept «chair» and the Spanish word “silla.”24

17.3.17 – When deaf people “think to themselves,” they do similar things to
what a non-deaf person does, but in their own mode of symbolism. They
“feel” their hands signing, as we can almost “feel” ourselves speaking. They
can “see” the signs, as we can almost hear the words.25

𝐼({‹sign›}) → «sign»

𝑅(«sign») → «sensation of signing»
23Duncan et al. (2018).
24Dufour & Kroll (1995).
25Klima & Bellugi (1979).
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17.4 Language & Perception
17.4.1 – When we hear speech (or see signs or written words), we immedi-
ately jump to the concepts and nearly immediately discard the primitive
perceptual and sensory data.

17.4.2 – If you see the word “green” in a yellow tone, you will first think
“green” before thinking yellow, even when you are specifically prompted to
try to say the color.26

𝐼({“green”, ‹yellow›}) → «green»

17.4.3 – When you hear a person speaking in another language, you will
notice the oddities of the sounds as sounds. But if you try to listen to your
own native language as a series of sounds you will be flooded with a stream
of concepts and thoughts about subtle linguistic cues given by the speaker,
with almost no ability to isolate the sounds on their own merit.

17.4.4 – Our language faculty is so inveterate in us that it almost takes the
place of one of our primary perceptions, and at the very minimum alters our
sensory perceptions significantly.

17.5 Communication
17.5.1 – Communication is the replication of a conceptual structure from
one mind to another, most often via language.

17.5.2 – Let’s illustrate an exchange between two persons 𝐴 and 𝐵.

𝑐𝐴 = ⟨⟨«subject», «I»⟩, ⟨«attribute», «hungry»⟩, … ⟩

𝑐𝐵 = ⟨⟨«subject», «they»⟩, ⟨«attribute», «hungry»⟩, … ⟩

𝑆𝐴(𝑐𝐴) → “I am hungry”

𝐼𝐵({“I am hungry”}) → «I am hungry»

𝑆−1
𝐵 («I am hungry») → 𝑐𝐴

𝑅𝐵(𝑐𝐴) → 𝑐𝐵

26This is known as the Stroop effect, see Stroop (1935).
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17.6 Internal Language
17.6.1 – Language is, as much as it is for communication, a system for
recalling and manipulating concepts to hold new relationships to each other.

17.6.2 – Our minds use language as a tool to make our ability to manipulate
concepts more efficient. This is our internal language.

17.6.3 – We all experience inner conceptualization, most often accompanied
by symbols that we enact only in our minds, such as imaginary self-speech.

17.6.4 – We “speak” much more often to ourselves, usually many times more,
than to others.27

17.6.5 – This is a strong indication that the purposes of language are as much
conceptual (i.e. internal to the mind) as they are communicative (external
to the mind).

17.7 Language Ambiguity
17.7.1 – Certain uses of language are ambiguous and can map to more than
one interpretation.

17.7.2 – This is exactly what we would expect if the mind’s conceptual
system is related to—but separate from—its symbolic system.

17.7.3 – Take the statement Mary saw Bob walking to the park. This state-
ment has three interpretations, each with a different meaning (or conceptual
structure).28

17.7.4 – The first is equivalent to: “Mary saw Bob as he was walking to
the park.” The second is equivalent to: “Mary saw Bob as she was walking
to the park.” The final interpretation, similar but subtly different from the
first is: “Mary saw Bob’s act of walking to the park.”

17.7.5 – Importantly, the statement can have all three meanings with the
exact same intonation.

17.7.6 – We can cycle through each interpretation of the sentence in our
minds, but can only hold one meaning to our attention at once.

17.7.7 – This shows us that the conceptual structure that lies beneath lan-
guage is independent of the grammatical structure of language.

27See Morin, Uttl & Hamper (2011). They found that approximately 20% of our inner
experience was inner speech, vastly outweighing even liberal estimates of how often we converse
with others.

28This is similar to an example given by Chomsky.
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18 Computation

“[O]n the basis of what has been proved so far, it remains
possible that there may exist (and even be empirically discov-
erable) a theorem proving machine which in fact is equivalent
to mathematical intuition, but cannot be proved to be so, nor
even be proved to yield only correct theorems of finitary number
theory.”

— Kurt Gödel

In this chapter, we will show that our framework can be used to emulate a
Turing machine, demonstrating its computational completeness.
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18.1 Turing Machines
18.1.1 – A Turing machine is a hypothetical machine invented by Alan Turing
capable of emulating any possible computational process.29

18.1.2 – By demonstrating that our mechanical framework can emulate any
Turing machine, we will demonstrate that our framework is Turing-complete,
i.e. that it also can perform any possible computation.

18.1.3 – A Turing machine has two main components.

18.1.4 – The first is a tape, divided into a number of squares. At any point
in time there is a pointer, called the head, that points to exactly one of those
squares.

18.1.5 – The second component is a set of configuration rules. Each rule
specifies that when the machine is in a given state, some transformation in
the state should occur.

18.1.6 – Each machine state is indicated generally by a short label, which
may consist of one or more Gothic letters. By convention the first machine
state is indicated 𝔟.

18.1.7 – The combination of this configuration label and the symbol the head
is pointing to determine which configuration rule to follow.

18.1.8 – The configuration rule can then indicate whether a new symbol
should be written in the square indicated by the current head, whether the
final operation should result in moving the head right or left one or more
squares, and the final configuration label, which will serve as the marker for
the next configuration state to follow.

18.1.9 – By convention, alternating squares mark out digits of the final result,
with the spaces in between reserved for marking each digit for purposes of
calculation.

18.1.10 – Also by convention, traditional Turing machines compute binary
numbers, and do not overwrite result digits after they’ve been written.

18.1.11 – A traditional Turing machine is valid only if it is “circle-free,” i.e. if
it will continue writing digits indefinitely without halting.

18.1.12 – Each configuration rule is indicated in a table format.

18.1.13 – We will demonstrate with the first example from Turing’s original
1936 paper:

29Turing (1936)



18.1 TURING MACHINES 139

config symbol operations final config

𝔟 None 𝑃0, 𝑅 𝔠
𝔠 None 𝑅 𝔢
𝔢 None 𝑃1, 𝑅 𝔣
𝔣 None 𝑅 𝔟

18.1.14 – Let’s see what this does. First, we begin in configuration 𝔟 and
our head at the beginning of a blank tape.

Figure 36: Turing Machine State 𝔟

18.1.15 – The “None,” indicates that this configuration applies if there is
no symbol in the square pointed to by the head. Under operations, 𝑃0, 𝑅
indicates that we should write (or put) the symbol “0,” then move to the
right.

18.1.16 – Here is our current tape:

Figure 37: Turing Machine State 𝔠

18.1.17 – After the operation is performed, it indicated that our final config
is to be 𝔠. So we next refer to the rules that pertain to config 𝔠.
18.1.18 – 𝔠 indicates that we should move right one more square, following
the conventional style to skip squares between our digits:

Figure 38: Turing Machine State 𝔢
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18.1.19 – We then switch to 𝔢 which indicates that we should put a “1” and
move to the right:

Figure 39: Turing Machine State 𝔣

18.1.20 – And then 𝔣 which indicates that we should move to the right again
and go back to state 𝔟:

Figure 40: Turing Machine State 𝔟

18.1.21 – And from there the cycle repeats:

Figure 41: Turing Machine State 𝔠

18.1.22 – The machine will continue to write alternating 0’s and 1’s in per-
petuity.

18.1.23 – It should be noted that this sequence represents the number 1
3 (in

binary: 0.01010101 …). All numbers in the sequence are assumed to appear
after the “binary decimal” point.

18.1.24 – For further examples, you can refer back to the original paper, or
to the many of studies on Turing machines that have been published since.

18.2 Universality
18.2.1 – One key feature of Turing machines is that Alan Turing showed in
his paper that a universal Turing machine can be built: a Turing machine
that can emulate any other Turing machine.30

30Turing (1936).
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18.2.2 – Its full set of configuration rules are given in the paper, so we will
omit them here. But this fact allows for a universal Turing machine to
perform any possible computation.31 This is known as the Church-Turing
thesis.

18.2.3 – Similarly, any system that can emulate any Turing machine can
therefore also be used to perform any possible computation.

18.2.4 – We will now show that our system can emulate a Turing machine,
specifically the example above.

18.3 Emulation
18.3.1 – In order to emulate the Turing machine above, we first have to
determine how each part of the Turing machine will be represented in our
framework.

18.3.2 – Let’s start with a conceptual structure that will hold the full current
state of the tape as a «sequence», the index of the cell that is currently being
pointed to by the head as its «index», and the symbol currently on the tape
at the «index» position as «current». «sequence» will function as a typical
«sequence», but it will yield [ ] for empty «index»’s instead of «0».

18.3.3 – Here’s our machine specifier:

𝜎𝑇 (𝑠, 𝑞, 𝑖, 𝑐) = ⟨⟨«state», 𝑠⟩, ⟨«current», 𝑐⟩, ⟨«sequence», 𝑞⟩, ⟨«index», 𝑖⟩⟩

∶ Υ({«b», «c», «e», «f»}, «state»)

18.3.4 – Now we can define each of the configuration rules as relations be-
tween states. Our first state will emulate configuration 𝔟:

𝑠𝔟 = 𝜎𝑇 («b», [⋅], [ ], [ ])

𝑅(𝑠𝔟) → 𝜎𝑇 («c», 𝑋(𝑠𝔟[sequence], 𝐻0(𝑠𝔟[index])),
𝑇 (𝑠𝔟[sequence], 𝑠𝔟[index], «0»), 𝐻0(𝑠𝔟[index]))

18.3.5 – Let’s examine each part of this rule to see how it matches to config-
uration 𝔟 in the Turing machine above.

18.3.6 – The first item of note is that the first two columns in the table
match to the first two fields is 𝑠𝔟. «b» indicates the configuration rule 𝔟,
and [⋅] matches a literal proxy, an empty sequence item.

31Ibid.
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18.3.7 – In the relation, we can see that the resulting «state» is «c», i.e. con-
figuration state 𝔠.
18.3.8 – We also note that «current» is set to extract the «sequence» item
that follows the current «index», incrementing it with operation 𝐻0. This is
due to the head moving right. If the head were to move to the left, it would
instead utilize 𝐻−1

0 to decrement «index» and use that value instead.

18.3.9 – If there were no move operation for this configuration, «current»
would simply be the symbol we write to the current square.

18.3.10 – The operation 𝑇 (𝑠𝔟[sequence], 𝑠𝔟[index], «0»), writes the symbol
«0» to the current «index».

18.3.11 – Finally, we use 𝐻0(𝑠𝔟[index]) to increment the current index, the
equivalent of moving the head one square to the right.

18.3.12 – Similarly to how we gathered the next value of «current», this
operation may use 𝐻−1

0 to move to the left, or will simply recall 𝑠𝔟[index] if
no movement is required.

18.3.13 – We use the same principles to define operations 𝔠, 𝔢, and 𝔣.
18.3.14 – 𝑠𝔠 simply moves the head one cell to the right and sets the state
to «e»:

𝑠𝔠 = 𝜎𝑇 («c», [⋅], [ ], [ ])

𝑅(𝑠𝔠) → 𝜎𝑇 («e», 𝑋(𝑠𝔠[sequence], 𝐻0(𝑠𝔠[index])),
𝑠𝔠[sequence], 𝐻0(𝑠𝔠[index]))

18.3.15 – 𝑠𝔢 writes «1», moves one cell to the right, and set the state to «f»:

𝑠𝔢 = 𝜎𝑇 («e», [⋅], [ ], [ ])

𝑅(𝑠𝔢) → 𝜎𝑇 («f», 𝑋(𝑠𝔢[sequence], 𝐻0(𝑠𝔢[index])),
𝑇 (𝑠𝔢[sequence], 𝑠𝔢[index], «1»), 𝐻0(𝑠𝔢[index]))

18.3.16 – And 𝑠𝔣 moves one cell to the right and set the state to «b», renewing
the cycle:

𝑠𝔣 = 𝜎𝑇 («f», [⋅], [ ], [ ])

𝑅(𝑠𝔣) → 𝜎𝑇 («b», 𝑋(𝑠𝔣[sequence], 𝐻0(𝑠𝔣[index])),
𝑠𝔣[sequence], 𝐻0(𝑠𝔣[index]))
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Figure 42: Turing Machine State Graph: Notice that, because it represents
a well-formed Turing machine, this graph never terminates.

18.3.17 – Here’s our execution table:

«state» «current» «sequence» «index»

𝑠𝔟 «b» [ ] ⟨⟩ ̄«0»
𝑅(𝑠𝔟) → 𝑠𝔠 «c» [ ] ⟨«0»⟩ ̄«1»
𝑅(𝑠𝔠) → 𝑠𝔢 «e» [ ] ⟨«0», [ ]⟩ ̄«2»
𝑅(𝑠𝔢) → 𝑠𝔣 «f» [ ] ⟨«0», [ ], «1»⟩ ̄«3»
𝑅(𝑠𝔣) → 𝑠𝔟 «b» [ ] ⟨«0», [ ], «1», [ ]⟩ ̄«4»
𝑅(𝑠𝔟) → 𝑠𝔠 «c» [ ] ⟨«0», [ ], «1», [ ], «0»⟩ ̄«5»
𝑅(𝑠𝔠) → 𝑠𝔢 «e» [ ] ⟨«0», [ ], «1», [ ], «0», [ ]⟩ ̄«6»
𝑅(𝑠𝔢) → 𝑠𝔣 «f» [ ] ⟨«0», [ ], «1», [ ], «0», [ ], «1»⟩ ̄«7»
𝑅(𝑠𝔣) → 𝑠𝔟 «b» [ ] ⟨«0», [ ], «1», [ ], «0», [ ], «1», [ ]⟩ ̄«8»

18.3.18 – This demonstration shows that our mechanical framework can
emulate every functional structure and operation of any Turing machine.

18.3.19 – These include:

1. The tape, via «sequence»;
2. The head, via «current» and «index»;
3. Configuration rules, including restrictions on which apply using

«state» and «current», via relations;
4. Turing machine operation put, 𝑃 , via 𝑇 acting on «sequence»;
5. Turing machine operation right, 𝑅, via 𝐻0 acting on «index»; and
6. Turing machine operation left, 𝐿, via 𝐻−1

0 acting on «index».

18.3.20 – Therefore, any system that can be specified as a Turing machine
has an equivalent conceptual machine.
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18.4 Significance
18.4.1 – It would be fair to ask: What is the significance of the system’s
Turing-completeness? We now know of a vast array of Turing-complete
systems. What make this one of any particular interest?

18.4.2 – To start, it is of some level of interest that the primitives of the sys-
tem have been specifically motivated by simple cognitive capabilities, with
highly plausible inferences made to reach them.

18.4.3 – Second, the elementary constituents of a computational system very
much matter in practice. If we were to build a discrete program search of
Turing machines to perform exponentiation, say, that Turing machine would
be much more complex than the exponentiation machine we’ve defined in
the course of this book.32

18.4.4 – Finally, the system’s Turing-complete nature allows us to do some-
thing very interesting: to build a conceptual machine that can emulate any
other conceptual machine.

32This subject is of particular interest to me and is something I plan to explore in future
work.
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“It is possible to invent a single machine which can be used to
compute any computable sequence.”

— Alan Turing

A conceptual machine can be built such that it can emulate any other con-
ceptual machine—a universal conceptual machine.

145
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19.1 Universal Conceptual Machine
19.1.1 – We can now draw influence from the universal Turing machine to
develop our own machine that is capable of emulating any other conceptual
machine—a universal conceptual machine.

19.1.2 – Though we will outline the construction of one such machine, ℳ𝑈 ,
there are other possible ways of constructing equivalent machines.

19.1.3 – The machine will be constructed such that the behavior of the
machine is specified entirely by its initial state, without any need for new
relations to be defined in order to emulate any other conceptual machine.

19.1.4 – This gives us the ability to define and store the behavior of arbitrary
machines in an entirely structural manner, a potentially useful capability for
a mind.

19.1.5 – We can imagine a mind that experiments by putting together differ-
ent structures that can be fed into its universal machine. The mind could
iterate over different structural and relational possibilities without develop-
ing the need for an entirely new relational procedure for each possibility.

19.1.6 – Though this general procedure would be more cumbersome, it would
allow for exploration of possible approaches to novel problems, and would
allow for the storing of idioms and paradigms that worked in previous con-
ceptual machines for use in later machines.

19.1.7 – This would explain how we can learn new mental processes by
analogy to previous structures that worked.

19.1.8 – It could also indicate why we are slow to learn some new cognitive
processes at first, because they are laboriously being implemented in a type
of universal conceptual machine.

19.1.9 – Once the process has been learned, the mind can convert the struc-
ture given to the universal machine into a new set of concept states and
their relations, internalizing the process.

19.1.10 – The ability for the mind to create new, arbitrary conceptual ma-
chines ad hoc may be the defining aspect of human creativity.

19.2 Machine Structure
19.2.1 – Because the set of relations that must be defined to put the workings
of the universal machine in place are somewhat complicated, we’re going to
take a slightly different approach in this chapter to defining our machine.

19.2.2 – First, we are going to define specifiers for the machine architecture
and to represent each necessary operation. Then we are going to demon-
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strate the structure that will emulate our machine to add counting numbers
ℳ1𝑐

(defined in §13.2) before we give the relations that actually make the
structure of the machine work.

19.2.3 – For this machine it is important to have an eye on the targeted
structure we want to have in place to define emulated machines, which will
hopefully elucidate the general direction we are headed as we work through
the relations, which are a bit more ponderous than those we’ve outlined so
far.

19.2.4 – To start, our machine specifier 𝜎𝑈 :

𝜎𝑈(𝑠, 𝑐, 𝑖, 𝑛, 𝑚, 𝑗, 𝑟) ≡ ⟨⟨«structure», 𝑠⟩, ⟨«configurations», 𝑐⟩, ⟨«index», 𝑖⟩,
⟨«next», 𝑛⟩, ⟨«matched», 𝑚⟩, ⟨«instruction», 𝑗⟩, ⟨«result», 𝑟⟩⟩

19.2.5 – «structure» is an arbitrary conceptual structure that represents the
state of the machine we are emulating.

19.2.6 – «configurations» is a «sequence» of configurations that yield a proxy
when no match is found via operation 𝑋′. Each configuration has the form
specified by:

𝜎𝑐𝑈
(𝑝, 𝑖) ≡ ⟨⟨«pattern», 𝑝⟩, ⟨«instruction», 𝑖⟩⟩

19.2.7 – A configuration represents a state and relation of the machine. «pat-
tern» is an arbitrary conceptual structure that is compared to «structure»
to determine if this configuration applies to the current state of the emu-
lated machine. Each configuration is iterated through until one is found that
matches the current structure. If so, «instruction» defines a set of operations
that will be performed on «structure».

19.2.8 – We also have a shorthand for the above that denotes 𝜎𝑐𝑈
as an

arrow with 𝑐𝑈 under it:

𝜎𝑐𝑈
(𝑝, 𝑖) ≡ 𝑝 →

𝑐𝑈
𝑖

19.2.9 – We will cover «instruction»’s further below.

19.2.10 – «index» is a «numeral» that indicates the current configuration in
«configurations».

19.2.11 – «next» represents the next configuration to be applied. This is
used to determine if there are no further instructions; if so the machine will
halt.
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19.2.12 – «matched» is the result of the operation 𝑌 , either «true» or «false»
depending on whether «structure» matches the current pattern.

19.2.13 – «instruction» is the instruction from the matched configuration.

19.2.14 – When the machine is finished executing, the result of the
operation—the final state of «structure»—will appear in «result».

19.2.15 – We can begin to see a rough sketch of how this machine will work,
emulating the process that a conceptual machine would generally follow to
execute by sequentially testing each configuration to see if its «pattern»
matches the machine’s «structure».

19.2.16 – But there is a critical component that we have yet to define: how
the «instruction»’s are operations, represented as conceptual structures that
will be applied to the machine’s «structure».

19.2.17 – For convenience in defining new machines, we have the machine
specifier ℳ𝑈 :

ℳ𝑈(𝑠, 𝑐) = 𝜎𝑈(𝑠, 𝑐, [ ], [ ], [ ], [ ], [ ])

19.2.18 – As well as a machine specifier to show the result of a machine:

ℳ𝑈𝑟
(𝑟) = 𝜎𝑈([ ], [ ], [ ], [ ], [ ], [ ], 𝑟)

19.3 Operation Specifiers
19.3.1 – To define operations, we’ll create new operation specifiers indicated
by a subscript 𝜎, after the operation name.

19.3.2 – For example 𝐶2𝜎, which represents operation 𝐶 with two compo-
nents:

𝐶2𝜎(𝑜1, 𝑜2) ≡ ⟨⟨«op», «opC»⟩, ⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩⟩

19.3.3 – And equivalent specifiers for other commonly used operations:

𝐸𝜎(𝑜1) ≡ ⟨⟨«op», «opE»⟩, ⟨«op1», 𝑜1⟩⟩

𝐶1𝜎(𝑜1) ≡ ⟨⟨«op», «opC»⟩, ⟨«op1», 𝑜1⟩⟩

𝐶3𝜎(𝑜1, 𝑜2, 𝑜3) ≡ ⟨⟨«op», «opC»⟩, ⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«op3», 𝑜3⟩⟩
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𝑌𝜎(𝑜1, 𝑜2) ≡ ⟨⟨«op», «opY»⟩, ⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩⟩

𝑋𝜎(𝑜1, 𝑜2) ≡ ⟨⟨«op», «opX»⟩, ⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩⟩

𝑇𝜎(𝑜1, 𝑜2, 𝑜3) ≡ ⟨⟨«op», «opT»⟩, ⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«op3», 𝑜3⟩⟩

𝐻0𝜎
(𝑜1) ≡ ⟨⟨«op», «op+H0»⟩, ⟨«op1», 𝑜1⟩⟩

𝐻−1
0𝜎

(𝑜1) ≡ ⟨⟨«op», «op-H0»⟩, ⟨«op1», 𝑜1⟩⟩

19.3.4 – Operation specifiers are used to specify new «instruction»’s within
«configurations».

19.3.5 – There is one additional operation specifier for recursive evaluation
of machines:

𝑅𝜎(𝑜1) ≡ ⟨⟨«op», «R»⟩, ⟨«op1», 𝑜1⟩⟩

19.4 Refs
19.4.1 – In order for these structures to have proper context, we also require
a new concept type called a ref. A ref refers to a component of the emulated
machine’s «structure».

19.4.2 – Refs have their own specifier, indicated by 𝜌:

𝜌(𝑟) ≡ ⟨«ref», 𝑟⟩

19.4.3 – For example, imagine our «structure» looks like this:

⟨⟨«ex», «A»⟩⟩

19.4.4 – In this case, 𝑅(𝜌(«𝑒𝑥»)) → «A».

19.4.5 – Refs are crucially important, because they allow us to refer back to
the current machine state, and define transformations on it.
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19.5 Instruction Specifier
19.5.1 – We will define one more specifier that prepares a specified operation
specified to be evaluated recursively, 𝜖:

𝜖(𝑠, 𝑐, 𝑜) ≡ ⟨⟨«structure», 𝑠⟩, ⟨«configurations», 𝑐⟩, ⟨«operation», 𝑜⟩⟩

19.5.2 – We will see how this structure will allow us to pass down the current
emulated machine state, via «structure» and «configurations», down recur-
sive levels of operation execution so that it can be accessed by refs embedded
down the operation hierarchy. This will become more clear as we build out
our machine.

19.6 Example Machine
19.6.1 – Now that we have our universal machine structure and necessary
specifiers defined, let’s give an example of a simple machine, so we can see
what our targeted representation will look like. This will give us a clearer
idea of how the relations we define between machine states emulates the
represented machine.

19.6.2 – Our example, machine ℳ𝑞, we will straightforwardly compose the
component tagged by «ex», with another concept «B»:

19.6.3 – First, our specifier:

𝜎𝑞(𝑎, 𝑏, 𝑟) ≡ ⟨⟨«op1», 𝑎⟩, ⟨«op2», 𝑏⟩, ⟨«result», 𝑟⟩⟩

19.6.4 – And now our single relation:

𝑠0𝑞
= 𝜎𝑞([ ], [ ], [⋅])

𝑅(𝑠0𝑞
) → 𝜎𝑞([ ], [ ], ⟨𝑠0𝑞

[op1], 𝑠0𝑞
[op1]⟩)

19.6.5 – For example:

𝑅(𝜎𝑞(«A», «B», [ ])) → 𝜎𝑞([ ], [ ], ⟨«A», «B»⟩)

𝑅(𝜎𝑞(«apple», «banana»)) → 𝜎𝑞([ ], [ ], ⟨«apple», «banana»⟩)
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19.7 Example Universal Machine Structure
19.7.1 – Now let’s represent 𝑅(𝜎𝑞(«A», «B», [ ])) as a universal machine.

19.7.2 – First let’s create a new type of specifier, a relation specifier, to
denote the transformation that should occur from a given machine state in
terms of a structure built from operation specifiers.

19.7.3 – Relation specifiers will be notated with 𝜔, in this case 𝜔𝑞.

𝜔𝑞(𝑎, 𝑏, 𝑟) ≡ 𝐶3𝜎(𝐶2𝜎(«op1», 𝑎), 𝐶2𝜎(«op2», 𝑏), 𝐶2𝜎(«result», 𝑟))

19.7.4 – This the direct analog of 𝜎𝑞 from §19.6.3 above.

19.7.5 – We will show in §19.10 that relations have an isomorphic mapping to
relations specifiers; that is, that every relation maps in a structure-preserving
way to exactly one relation specifier, and vice versa.

19.7.6 – Now let’s show the structure of our universal machine:

ℳ𝑈(𝑠𝑞, 𝑐𝑞) → 𝑟𝑞

∶ 𝑠𝑞 = 𝜎𝑞(«A», «B», [ ])

∶ 𝑐𝑞0
= 𝜎𝑞([ ], [ ], [⋅]) →

𝑐𝑈
𝜔𝑞([ ], [ ], 𝐶2𝜎(𝜌(«op1»), 𝜌(«op2»)))

∶ 𝑟𝑞 = ℳ𝑈𝑟
(𝜎𝑞([ ], [ ], ⟨«A», «B»⟩))

19.7.7 – What this formula does is:

1. Sets the machine state in «structure» to 𝜎𝑞(«A», «B», [ ]);
2. Creates a single configuration 𝑐𝑞0

in «configurations» at index «0»;
3. That configuration looks for any «structure» that matches 𝜎𝑞([ ], [ ], [⋅])

(i.e. its «pattern»);
4. When a match is found, the outer 𝜔𝑞 is used to reconstruct «structure»,

and the operation indicated by 𝐶2𝜎(𝜌(«op1»), 𝜌(«op2»)) is executed,
yielding ⟨«A», «B»⟩ in 𝑟𝑞.

19.7.8 – Note that the structure specified by 𝐶2𝜎 represents the operation
𝐶 with two arguments, 𝐶3𝜎 with three, etc.

19.7.9 – Embedded within that operation are the refs 𝜌(«op1») and 𝜌(«op2»),
which in this case refers to the «A» and «B» in «structure», respectively.
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Figure 43: Example Configuration: This structure represents a configuration
that combines the inputs from two operands, «op1» and «op2», via operation
𝐶, indicated by 𝐶2𝜎, into its «result».

Figure 44: Evaluation Cycle State Graph: This graph shows that 𝑠3𝑈
repeats

until «structure» matches the current «configuration»’s «pattern». When
a match is found, 𝑠1𝑈

evaluates the «instruction» and resets the state to
𝑠3𝑈

, which will again look for another match. When no further matches are
found, 𝑠2𝑈

is invoked and the cycle completes.
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19.8 Evaluation Cycle
19.8.1 – Now that we have a picture of how we want our universal machine
to be structured, we can now put into place the relations we need for the
core of the machine, which we will call the evaluation cycle.

19.8.2 – We need to traverse «configurations» until we find one whose «pat-
tern» matches «structure». When we find a match, we will evaluate the
structure that represents the operation to be applied.

19.8.3 – Our first state will initialize the machine:

𝑠0𝑈
= 𝜎𝑈([ ], [ ], [⋅], [ ], [ ], [⋅], [⋅])

𝑅(𝑠0𝑈
) → 𝜎𝑈(𝑠0𝑈

[structure], 𝑠0𝑈
[configurations], «0»,

𝑠0𝑈
[configurations][0], «false», [ ], [ ])

19.8.4 – Our second state will evaluate the previous «instruction» if the
previous configuration is «matched»; evaluation is represented by a new
operation 𝑉 , which will be defined below.

𝑠1𝑈
= 𝜎𝑈([ ], [ ], «any-num», [ ], «true», [ ], [⋅])

𝑅(𝑠1𝑈
) → 𝜎𝑈(𝑉 (𝑠1𝑈

[structure], 𝑠1𝑈
[configurations], 𝑠1𝑈

[instruction]),
𝑠1𝑈

[configurations], «0», 𝑠1𝑈
[configurations][0], «false», [ ], [ ])

19.8.5 – Note that after the operation has been evaluated, it sets the «index»
back to «0», setting the machine up to restart the evaluation cycle.

19.8.6 – Our third state cleans up the machine and moves «structure» to
«result» if there is no «next» instruction:

𝑠2𝑈
= 𝜎𝑈([ ], [ ], «any-num», [⋅], [ ], [ ], [ ])

𝑅(𝑠2𝑈
) → 𝜎𝑈([ ], [ ], [ ], [ ], [ ], [ ], 𝑠2𝑈

[structure])

19.8.7 – Our final state moves to the next instruction, if the current instruc-
tion does not match «structure».

19.8.8 – As it makes this iteration, it must set «matched» and «instruc-
tion» to the appropriate values, given the current configuration indicated
by «index».
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𝑠3𝑈
= 𝜎𝑈([ ], [ ], «any-num», [ ], «false», [ ], [⋅])

𝑅(𝑠3𝑈
) → 𝜎𝑈(𝑠3𝑈

[structure], 𝑠3𝑈
[configurations],

𝐻0(𝑠3𝑈
[index]), 𝑠3𝑈

[configurations][𝐻0(𝑠3𝑈
[index])],

𝑌 (𝑠3𝑈
[structure], 𝑠3𝑈

[configurations][𝑠3𝑈
[index]][pattern]),

𝑠3𝑈
[configurations][𝑠3𝑈

[index]][instruction], [ ])

19.9 Evaluation
19.9.1 – With the evaluation loop in place, now we need to define how the
operations themselves are evaluated.

19.9.2 – Let’s start by defining how each operation indicated in §19.3 should
be applied.

19.9.3 – To illustrate, let’s look at 𝐶1𝜎:

𝑠𝐶1
= 𝜖([ ], [ ], 𝐶1𝜎([ ]))

𝑅(𝑠𝐶1
) → 𝜖(𝑠𝐶1

[structure], 𝑠𝐶1
[configurations],

𝐶(𝑉 (𝑠𝐶1
[structure], 𝑠𝐶1

[configurations], 𝑠𝐶1
[operation][op1])))

19.9.4 – The first two arguments to the instruction specifier 𝜖 are «structure»
and «configurations». This allows us to inject that same machine state
into operation 𝑉 , evaluate, which yields recursive evaluation of the specified
operations.

19.9.5 – The final argument is the «operation», a structural representation
of the operation that will be performed, which will be transformed into the
result of the operation.

19.9.6 – Let’s now define operation 𝑉 :

𝑉 (𝑠, 𝑐, 𝑜) ≡ 𝑋(𝑅(𝜖(𝑠, 𝑐, 𝑜)), «operation»)

19.9.7 – As we can see, 𝑉 converts its arguments to an instruction specifier
with 𝜖, then evaluates the operation given with 𝑅, and yields the resulting
«operation», which will now be the actual result of applying that operation
recursively.
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19.9.8 – This gives us the capability to nest operations and refs indefinitely,
as we could in any other relation.

19.9.9 – For completeness, we’ll now give the definitions of each of the re-
maining common operations:

𝑠𝐶2
= 𝜖([ ], [ ], 𝐶2𝜎([ ], [ ]))

𝑅(𝑠𝐶2
) → 𝜖(𝑠𝐶2

[structure], 𝑠𝐶2
[configurations],

𝐶(𝑉 (𝑠𝐶2
[structure], 𝑠𝐶2

[configurations], 𝑠𝐶2
[operation][op1]),

𝑉 (𝑠𝐶2
[structure], 𝑠𝐶2

[configurations], 𝑠𝐶2
[operation][op2])))

𝑠𝐶3
= 𝜖([ ], [ ], 𝐶3𝜎([ ], [ ], [ ]))

𝑅(𝑠𝐶3
) → 𝜖(𝑠𝐶3

[structure], 𝑠𝐶3
[configurations],

𝐶(𝑉 (𝑠𝐶3
[structure], 𝑠𝐶3

[configurations], 𝑠𝐶3
[operation][op1]),

𝑉 (𝑠𝐶3
[structure], 𝑠𝐶3

[configurations], 𝑠𝐶3
[operation][op2]),

𝑉 (𝑠𝐶3
[structure], 𝑠𝐶3

[configurstions,] 𝑠𝐶3
[operation][op3])))

𝑠𝑌 = 𝜖([ ], [ ], 𝑌𝜎([ ], [ ]))

𝑅(𝑠𝑌 ) → 𝜖(𝑠𝑌 [structure], 𝑠𝑌 [configurations],
𝑌 (𝑉 (𝑠𝑌 [structure], 𝑠𝑌 [configurations], 𝑠𝑌 [operation][op1]),
𝑉 (𝑠𝑌 [structure], 𝑠𝑌 [configurations], 𝑠𝑌 [operation][op2])))

𝑠𝑋 = 𝜖([ ], [ ], 𝑋𝜎([ ], [ ]))

𝑅(𝑠𝑋) → 𝜖(𝑠𝑋[structure], 𝑠𝑋[configurations],
𝑋(𝑉 (𝑠𝑋[structure], 𝑠𝑋[configurations], 𝑠𝑋[operation][op1]),
𝑉 (𝑠𝑋[structure], 𝑠𝑋[configurations], 𝑠𝑋[operation][op2])))

𝑠𝑇 = 𝜖([ ], [ ], 𝑇𝜎([ ], [ ], [ ]))

𝑅(𝑠𝑇 ) → 𝜖(𝑠𝑇 [structure], 𝑠𝑇 [configurations],
𝑇 (𝑉 (𝑠𝑇 [structure], 𝑉 (𝑠𝑇 [configurations], 𝑠𝑇 [operation][op1]),

𝑉 (𝑠𝑇 [structure], 𝑉 (𝑠𝑇 [configurations], 𝑠𝑇 [operation][op2]),
𝑉 (𝑠𝑇 [structure], 𝑉 (𝑠𝑇 [configurations], 𝑠𝑇 [operation][op3])))
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𝑠𝐻0
= 𝜖([ ], [ ], 𝐻0𝜎

([ ]))

𝑅(𝑠𝐻0
) → 𝜖(𝑠𝐻0

[structure], 𝑠𝐻0
[configurations],

𝐻0(𝑉 (𝑠𝐻0
[structure], 𝑠𝐻0

[configurations], 𝑠𝐻0
[operation][op1])))

𝑠𝐻−1
0

= 𝜖([ ], [ ], 𝐻−1
0𝜎

([ ]))

𝑅(𝑠𝐻−1
0

) → 𝜖(𝑠𝐻−1
0

[structure], 𝑠𝐻−1
0

[configurations],
𝐻−1

0 (𝑉 (𝑠𝐻−1
0

[structure], 𝑠𝐻−1
0

[configurations], 𝑠𝐻−1
0

[operation][op1])))

19.9.10 – In addition to our operations, we also need to define how to evaluate
refs:

𝑠ref = 𝜖([ ], [ ], 𝜌([ ]))

𝑅(𝑠ref) → 𝜖(𝑠ref[structure], 𝑠ref[configurations],
𝑋(𝑠ref[structure], 𝑠ref[ref]))

19.9.11 – And finally, a way to recursively evaluate sub-machines:

𝑠𝑅 = 𝜖([ ], [ ], 𝑅𝜎([ ]))

𝑅(𝑠𝑅) → 𝜖(𝑠𝑅[structure], 𝑠𝑅[configurations],
𝑋(𝑅(𝑉 (𝑠𝑅[structure], 𝑠𝑅[configurations], 𝑠𝑅[instruction][instruction]),

«result»)))

19.9.12 – This recursive evaluation procedure allows us to simulate any con-
ceptual machine, or compound conceptual machine, in a format that is iso-
morphic to evaluated conceptual machine.

19.10 Isomorphism
19.10.1 – When we say that the universal machine is isomorphic to the
base-level machines, what we mean is that there exists an exact one-to-one
mapping that can convert one to the other and vice-versa. This mapping
must also preserve the structure of the representation between the two types
of machines.
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19.10.2 – In our case, this mapping consists of a set of substitution rules,
which can be implemented in a mechanical way.

19.10.3 – Because of the form that we designed our universal machine to
take, we can define these substitutions rather simply.

19.10.4 – We must keep in mind that these results assume that the relations
are defined in a normalized form: all extractions will be denoted with op-
eration 𝑋 instead of the alternate bracketed syntax, and all specifiers and
complex operations will be expanded to substitute their implementation as
the fundamental operations (except for 𝐻0 and 𝐻−1

0 which we have also
defined operation specifiers for).

19.10.5 – The procedure works for the conversion between some base machine
ℳ𝑏 to a state that can be evaluated by our universal machine ℳ𝑈 like this:

1. Begin by setting «structure» in ℳ𝑈 to some valid initial state of ℳ𝑏;
2. For every relation 𝑟, of every state 𝑠 in 𝑀𝑏:

1. Create a new configuration 𝑐𝑟 of «configurations» in ℳ𝑈 ;
2. Set 𝑐𝑟[pattern] = 𝑠;
3. Set 𝑐𝑟[instruction] equal to the result of 𝑅(𝑠), transformed ac-

cording to the substitution rules below.

19.10.6 – The table below represents the substitution rules to transform the
result of a relation into a concept that represents the operation.

𝑅(𝑠) 𝑐𝑟[instruction]

𝑋(𝑠, [ ]1) 𝜌([ ]1)
𝐸([ ]1) 𝐸𝜎([ ]1)
𝐶([ ]1) 𝐶1𝜎([ ]1)
𝐶([ ]1, [ ]2) 𝐶2𝜎([ ]1, [ ]2)
𝐶([ ]1, [ ]2, [ ]3) 𝐶3𝜎([ ]1, [ ]2, [ ]3)
𝑌 ([ ]1, [ ]2) 𝑌𝜎([ ]1, [ ]2)
𝑋([ ]1, [ ]2) 𝑋𝜎([ ]1, [ ]2)
𝑇 ([ ]1, [ ]2, [ ]3) 𝑇𝜎([ ]1, [ ]2, [ ]3)
𝐻0([ ]1) 𝐻0𝜎

([ ]1)
𝐻−1

0 ([ ]1) 𝐻−1
0𝜎

([ ]1)
𝑅([ ]1) 𝑅𝜎([ ]1)
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19.10.7 – The substitution rules use the proxy [ ] as a placeholder for a
conceptual entity, marked with a subscript to identify the particular entity
between both sides of the transformation.

19.10.8 – This is the entire set of every fundamental operation in our system.

19.10.9 – In the opposite direction, the procedure goes:

1. Begin by setting initial state of ℳ𝑏 to «structure» in ℳ𝑈 ;
2. For every configuration 𝑐𝑟, of «configurations» in ℳ𝑈 :

1. Create a new state 𝑠 = 𝑐𝑟[pattern];
2. Define a relation 𝑅(𝑠), transformed from 𝑐𝑟[instruction] according

to the substitution rules below.

19.10.10 – This table is the exact inverse of the one in §19.10.6:

𝑐𝑟[instruction] 𝑅(𝑠)

𝜌([ ]1) 𝑋(𝑠, [ ]1)
𝐸𝜎([ ]1) 𝐸([ ]1)
𝐶1𝜎([ ]1) 𝐶([ ]1)
𝐶2𝜎([ ]1, [ ]2) 𝐶([ ]1, [ ]2)
𝐶3𝜎([ ]1, [ ]2, [ ]3) 𝐶([ ]1, [ ]2, [ ]3)
𝑌𝜎([ ]1, [ ]2) 𝑌 ([ ]1, [ ]2)
𝑋𝜎([ ]1, [ ]2) 𝑋([ ]1, [ ]2)
𝑇𝜎([ ]1, [ ]2, [ ]3) 𝑇 ([ ]1, [ ]2, [ ]3)
𝐻0𝜎

([ ]1) 𝐻0([ ]1)
𝐻−1

0𝜎
([ ]1) 𝐻−1

0 ([ ]1)
𝑅𝜎([ ]1) 𝑅([ ]1)

19.10.11 – Our substitution rules map every operation from base-level ma-
chines to universal machines, and vice versa; each configuration from the
universal machine is mapped isomorphically to a relation in a base machine,
and vice versa.

19.10.12 – These two conditions guarantee that our universal machine is truly
universal—i.e. that every base-level conceptual machine has an equivalent
universal machine state.
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19.11 Multiplication Machine
19.11.1 – Let’s build another more complicated machine to show the full
capabilities of our universal machine by demonstrating the analogue of the
multiplying machine 𝑀2𝑐

within our universal machine.

19.11.2 – Let’s first take a look at the state specifier 𝜎2𝑐
from §13.3.2:

𝜎2𝑐
(𝑜1, 𝑜2, 𝑟) = ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«product», 𝑟⟩⟩

19.11.3 – Now we’ll define our relation specifier 𝜔2𝑐
to match:

𝜔2𝑐
(𝑜1, 𝑜2, 𝑟) ≡ 𝐶3𝜎(𝐶2𝜎(«op1», 𝑎), 𝐶2𝜎(«op2», 𝑏), 𝐶2𝜎(«product», 𝑟))

19.11.4 – Our machine will give a representation of the multiplication 2 × 3.
Here’s our operation:

ℳ𝑈(𝑠2𝑐, 𝑐2𝑐) → 𝑟2𝑐

∶ 𝑠2𝑐 = 𝜎2𝑐
(«2», «3», [ ])

19.11.5 – We’ll look at our machine states one-by-one, and compare them
with the analogous states from 𝑀2𝑐

. Let’s look at the first state 𝑠02𝑐
, from

§13.3.3:

𝑠02𝑐
= 𝜎2𝑐

([ ], [ ], [⋅])

𝑅(𝑠02𝑐
) → 𝜎2𝑐

(𝑠02𝑐
[op1], 𝑠02𝑐

[op2], «0»)

19.11.6 – Here’s our analogue in the universal machine for comparison:

∶ 𝑐2𝑐0
= 𝜎2𝑐

([ ], [ ], [⋅]) →
𝑐𝑈

𝜔2𝑐
(𝜌(«op1»), 𝜌(«op2»), «0»)

19.11.7 – Now let’s look at the second state, 𝑠12𝑐
, from §13.3.4:

𝑠12𝑐
= 𝜎2𝑐

([ ], «not-0», [ ])

𝑅(𝑠12𝑐
) → 𝜎2𝑐

(𝑠12𝑐
[op1], 𝐻−1

0 (𝑠12𝑐
[op2]), 𝐻1𝑐

(𝑠12𝑐
[product], 𝑠12𝑐

[op1]))
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19.11.8 – Interestingly, this one invokes 𝐻1𝑐
, an operation defined by the

addition machine from §13.2. The way we handle that is to then translate
the addition machine states right into our universal machine.

19.11.9 – Now, we need our addition state specifier 𝜎1𝑐
, defined in §13.2.2:

𝜎1𝑐
(𝑜1, 𝑜2, 𝑟) = ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«sum», 𝑟⟩⟩

19.11.10 – Let’s create the equivalent relation specifier:

𝜔1𝑐
(𝑜1, 𝑜2, 𝑟) ≡ 𝐶3𝜎(𝐶2𝜎(«op1», 𝑎), 𝐶2𝜎(«op2», 𝑏), 𝐶2𝜎(«sum», 𝑟))

19.11.11 – Now, let’s translate the first addition machine state 𝑠0𝑐1
from

§13.2.3:

𝑠0𝑐1
= 𝜎1𝑐

([ ], [ ], [⋅])

𝑅(𝑠0𝑐1
) → 𝜎1𝑐

([ ], 𝑠0𝑐1
[op2], 𝑠0𝑐1

[op1])

19.11.12 – We define its equivalent in ℳ𝑈 :

∶ 𝑐2𝑐1
= 𝜎1𝑐

([ ], [ ], [⋅]) →
𝑐𝑈

𝜔1𝑐
([ ], 𝜌(«op2»), 𝜌(«op1»))

19.11.13 – Now 𝑠1𝑐1
from §13.2.4:

𝑠1𝑐1
= 𝜎1𝑐

([⋅], «not-0», [ ])

𝑅(𝑠1𝑐1
) → 𝜎1𝑐

([ ], 𝐻−1
0 (𝑠1𝑐1

[op2]), 𝐻0(𝑠1𝑐1
[sum]))

19.11.14 – Its equivalent:

∶ 𝑐2𝑐2
= 𝜎1𝑐

([⋅], «not-0», [ ]) →
𝑐𝑈

𝜔1𝑐
([ ], 𝐻−1

0𝜎
(𝜌(«op2»)), 𝐻0𝜎

(𝜌(«sum»)))

19.11.15 – And 𝑠2𝑐1
from §13.2.6:

𝑠2𝑐1
= 𝜎1𝑐

([⋅], ̇«0», [ ])
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𝑅(𝑠2𝑐1
) → 𝜎1𝑐

([ ], [ ], 𝑠2𝑐1
[sum])

19.11.16 – Translated:

∶ 𝑐2𝑐3
= 𝜎1𝑐

([⋅], «not-0», [ ]) →
𝑐𝑈

𝜔1𝑐
([ ], [ ], 𝜌(«sum»))

19.11.17 – We now have all the states we need within 𝑀𝑈 to handle the
operation 𝐻1𝑐

from §19.11.7. Let’s first look at the definition of 𝐻1𝑐
from

§13.2.8:

𝐻1𝑐
(𝑜1, 𝑜2) ≡ 𝑋(𝑅(ℳ1𝑐

(𝑜1, 𝑜2)), «sum»)

19.11.18 – Since ℳ1𝑐
(𝑜1, 𝑜2) ≡ 𝜎1𝑐

(𝑜1, 𝑜2, [ ]), according to §13.2.7, this can
be translated according to our substitution rules to:

𝐻1𝜎
(𝑜1, 𝑜2) ≡ 𝑋𝜎(𝑅𝜎(𝜔1𝑐

(𝑜1, 𝑜2, [ ])), «sum»)

19.11.19 – Now we can define the ℳ𝑈 equivalent of §19.11.7:

∶ 𝑐2𝑐4
= 𝜎2𝑐

([ ], «not-0», [ ]) →
𝑐𝑈

𝜔2𝑐
(𝜌(«op1»), 𝐻−1

0𝜎
(𝜌(«op2»)),

𝐻1𝜎
(𝜌(«product»), 𝜌(«op1»)))

19.11.20 – Let’s translate the final state 𝑠2𝑐2
from §13.3.6:

𝑠2𝑐2
= 𝜎2𝑐

([ ], ̇«0», [ ])

𝑅(𝑠2𝑐2
) → 𝜎2𝑐

([ ], [ ], 𝑠2𝑐2
[product])

19.11.21 – Our final configuration:

∶ 𝑐2𝑐5
= 𝜎2𝑐

([ ], ̇«0», [ ]) →
𝑐𝑈

𝜔2𝑐
([ ], [ ], 𝜌(«product»))

19.11.22 – And our expected result of 2 × 3:

∶ 𝑟2𝑐 = 𝑀𝑈𝑟
(𝜎2𝑐

([ ], [ ], «6»))
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19.12 Operation U
19.12.1 – It will be useful to have an operation that represents the evaluation
of arbitrary states and configurations of ℳ𝑈 .

19.12.2 – We’ll define operation 𝑈 to execute arbitrary ℳ machine states
and configuration sets as:

𝑈(𝑠, 𝑐) ≡ 𝑋(𝑅(ℳ𝑈(𝑠, 𝑐)), «result»)



20 Abstraction

“So intelligence, which is to say, generalization power, is
literally sensitivity to abstract analogies, and that’s in fact all
there is to it.”

— François Chollet

The defining character of the human mind is its ability to extract clarity
from confusion—an abstract reality from a wholly concrete one.

163
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20.1 Redundancy & Comparison
20.1.1 – Recall our definition of abstraction from §1.4.1:

An abstraction is a construction which models multiple things,
or aspects of things, as a single thing.

20.1.2 – This mapping of many things to a single thing is a compressive
operation, from an information perspective. We are representing the same
information with a smaller set of elements.

20.1.3 – Similar to compression in information theory, the compression oc-
curs by identifying redundancy between two representations, and creates a
new, more terse representation that can apply to both.

20.1.4 – In order to perform this type of operation, we need a way of deter-
mining how similar two concepts are, and to extract those similarities.

20.1.5 – For this purpose, we will define an alternate version of Υ—Υ∗—
which returns a numerical representation of how similar conceptual struc-
tures are.

20.1.6 – This section will demonstrate how we could give a plausible defi-
nition of Υ∗, but it is in no way definitive that this is the definition that
is most accurate or useful. Particularly it has a naive implementation with
very poor scaling properties, but it has other properties that may make other
approaches more desirable as well. This is left to future work to sort out.

20.1.7 – In order to do create a numerical value for the comparison, we
first need to come up with some alternate representation of a conceptual
structure that is more amenable to comparison. We’ll accomplish this by
splitting a conceptual structure into a set of every possible substructure:

𝑔(𝑎) ≡ 𝑔′(𝑎) ∪ 𝑔″(𝑔′(𝑎))

𝑔′(𝑎) ≡ ⋃
𝑏∈𝐸(𝑎)

{𝒫({𝑏}) if Π(𝑏)
{𝐶(𝑐) ∶ 𝑐 ∈ {𝑔′(𝑏1) × … × 𝑔′(𝑏𝑛)}, 𝑏𝑖 ∈ 𝐸(𝑏)} otherwise

𝑔″(𝐴) ≡ ⋃
𝑎∈𝐴

⎧{
⎨{⎩

{} if Π(𝑎)
𝐸(𝑎) ∪ 𝑔″(𝐸(𝑎)) if |𝐸(𝑎)| = 1
{} otherwise

20.1.8 – 𝑔(𝑎) gives every possible substructure of 𝑎. It does this via the
union of the results of the two subfunctions 𝑔′ and 𝑔″.
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20.1.9 – 𝑔′(𝑎) gives a set of every possible substructure of the same depth as
𝑎. 𝑔′ iterates over every component 𝑏 of 𝑎. If the component 𝑏 is primitive,
i.e. Π(𝑏), then it returns the powerset of {𝑏}, i.e. {𝑏, {}}. Otherwise, every
combination of 𝑔′ acting on each component of 𝑏 is returned, recursively
processing all non-primary concepts in the tree.

20.1.10 – Let’s look at an example with a simple concept 𝑥, where:

𝑥 = ⟨𝑞, 𝑟⟩
𝑔′(𝑥) = {⟨𝑞, 𝑟⟩, ⟨𝑞⟩, ⟨𝑟⟩}

20.1.11 – Notice that this gives us every possible substructure of the same
depth. But it does not yield to us the substructures at lower levels, 𝑞 and 𝑟
in this case.

20.1.12 – For that reason we have 𝑔″(𝐴) which takes the set of structures
yielded by 𝑔′ and traverses down them each time the structure has only one,
non-primitive child.

20.1.13 – Let’s look at 𝑔″(𝑔′(𝑥)) the example from above:

𝑔″({⟨𝑞, 𝑟⟩, ⟨𝑞⟩, ⟨𝑟⟩}) = {𝑞, 𝑟}

20.1.14 – And we can now see that 𝑔(𝑥) returns every substructure of 𝑥:

𝑔(𝑥) = {⟨𝑞, 𝑟⟩, ⟨𝑞⟩, ⟨𝑟⟩, 𝑞, 𝑟}

20.1.15 – If you are following closely, you may notice that this some hidden
logic here that is used to remove empty concepts and sets of concepts, which
I have omitted for clarity.

20.1.16 – For our example, we will also utilize a similar conceptual structure
𝑦, which only differs from 𝑥 in that 𝑥’s 𝑟 becomes an 𝑠.

𝑦 = ⟨𝑞, 𝑠⟩
𝑔(𝑦) = {⟨𝑞, 𝑠⟩, ⟨𝑞⟩, ⟨𝑠⟩, 𝑞, 𝑠}

20.1.17 – Now we define 𝑔∪(𝐴), function that will gather a set of every
permutation in the set of concepts 𝐴.

𝑔∪(𝐴) ≡ ⋃
𝑎∈𝐴

𝑔(𝑎)
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20.1.18 – In our example:

𝑔∪({𝑥, 𝑦}) = {⟨𝑞, 𝑟⟩, ⟨𝑞, 𝑠⟩, ⟨𝑞⟩, ⟨𝑟⟩, ⟨𝑠⟩, 𝑞, 𝑟, 𝑠}

20.1.19 – We will refer to each potential substructure as a permutation.

20.1.20 – The function 𝑑(𝑝, 𝑎) below takes a permutation 𝑝 and a concept
𝑎; it returns 1 in the case that 𝑝 exists in 𝑎’s set of permutations 𝑔(𝑎) and
0 otherwise:

𝑑(𝑝, 𝑎) ≡ {1 if 𝑝 ∈ 𝑔(𝑎)
0 otherwise

20.1.21 – The functions 𝑔(𝑎), 𝑔∪(𝐴), and 𝑑(𝑝, 𝑎) allow us to construct a set
𝑒(𝑎 ∣ 𝐴) for concept 𝑎 of set 𝐴, indexed by each permutation 𝑝 from 𝑔∪(𝐴)
which has the value 1 when 𝑝 ∈ 𝑔(𝑎) and 0 otherwise. This representation
as a binary string is amenable to further quantitative analysis.

20.1.22 – First we can look at the binary representation of a concept without
respect to any other set of concepts.

20.1.23 – In this case, every value in the binary string will be 1 because the
set is indexed by those permutations that are in 𝑔(𝑎). For a concept 𝑎 we
denote this:

𝑒(𝑎) ≡ {1𝑝}𝑝∈𝑔(𝑎)

20.1.24 – In an alternative formulation, we can look at this representation
with respect to the permutations generated from a set of concepts 𝐴 as
𝑒(𝑎 ∣ 𝐴):

𝑒(𝑎 ∣ 𝐴) ≡ { 𝑑(𝑝, 𝑎)𝑝 }𝑝∈𝑔∪(𝐴)

20.1.25 – Following our example of 𝑥 and 𝑦, let’s look at 𝑒(𝑥), 𝑒(𝑦), 𝑒(𝑥 ∣
{𝑥, 𝑦}), and 𝑒(𝑦 ∣ {𝑥, 𝑦}):

𝑒(𝑥) = {1⟨𝑞,𝑟⟩, 1⟨𝑞⟩, 1⟨𝑟⟩, 1𝑞, 1𝑟}
𝑒(𝑥 ∣ {𝑥, 𝑦}) = {1⟨𝑞,𝑟⟩, 0⟨𝑞,𝑠⟩, 1⟨𝑞⟩, 1⟨𝑟⟩, 0⟨𝑠⟩, 1𝑞, 1𝑟, 0𝑠}

𝑒(𝑦) = {1⟨𝑞,𝑠⟩, 1⟨𝑞⟩, 1⟨𝑠⟩, 1𝑞, 1𝑠}
𝑒(𝑦 ∣ {𝑥, 𝑦}) = {0⟨𝑞,𝑟⟩, 1⟨𝑞,𝑠⟩, 1⟨𝑞⟩, 0⟨𝑟⟩, 1⟨𝑠⟩, 1𝑞, 0𝑟, 1𝑠}
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20.1.26 – Our final utility function for defining Υ∗ is 𝑚(𝑝, 𝐴), a function
which takes a permutation 𝑝 and a set of concepts 𝐴 and returns the mean
value of 𝑑(𝑝, 𝑎) for all values of 𝑎 ∈ 𝐴:

𝑚(𝑝, 𝐴) ≡ 1
|𝐴| ∑

𝑎∈𝐴
𝑑(𝑝, 𝑎)

20.1.27 – Note that when all values of 𝑑(𝑝, 𝑎) for 𝑎 ∈ 𝐴 are 1, 𝑚(𝑝, 𝐴) = 1;
when all values are not 1, 0 < 𝑚(𝑝, 𝐴) < 1. This is an important property,
because we define Υ∗ in terms of the Shannon entropy33 needed to represent
the difference between conceptual structures.

20.1.28 – We’ll now give our first definition of Υ∗ which accepts a set of
concepts 𝐴 and returns the Shannon entropy of the set according to the
permutation-indexed binary strings generated by 𝑒 above.

Υ∗(𝐴) ≡ − ∑
𝑝∈𝑔∪(𝐴)

𝑚 log2 𝑚 + (1 − 𝑚) log2 (1 − 𝑚)

∶ 𝑚 = 𝑚(𝑝, 𝐴)

20.1.29 – Notice that when all structures in 𝐴 contain a given permutation
𝑝, 𝑚(𝑝, 𝐴) = 1; because log2 1 = 0, the entropy added for that item is 0.
Further, that means that a set of identical structures gives a value of Υ∗

that is also 0.

20.1.30 – Let’s calculate Υ∗({𝑥, 𝑦}) from our example above:

Υ∗({𝑥, 𝑦}) = −3( 1+0
2 log2

1+0
2 + (1 − 1+0

2 ) log2(1 − 1+0
2 ))

− 3( 1+0
2 log2

1+0
2 + (1 − 1+0

2 ) log2(1 − 1+0
2 ))

− 2( 1+1
2 log2

1+1
2 + (1 − 1+1

2 ) log2(1 − 1+1
2 ))

Υ∗({𝑥, 𝑦}) = −3(.5 ⋅ log2 .5 + .5 ⋅ log2 .5)
− 3(.5 ⋅ log2 .5 + .5 ⋅ log2 .5)
− 2(1 ⋅ log2 1 + 0 ⋅ log2 0)

Υ∗({𝑥, 𝑦}) = (3 ⋅ 1) + (3 ⋅ 1) + (2 ⋅ 0)
Υ∗({𝑥, 𝑦}) = 6

33See Shannon (1948).
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20.1.31 – Notice that 6 is the number of bits that are different between 𝑒(𝑥 ∣
{𝑥, 𝑦}) and 𝑒(𝑦 ∣ {𝑥, 𝑦}). Υ∗ is a measure of the difference in information
between two conceptual structures.

20.1.32 – Because {𝑥, 𝑦} is a set of only 2 items, the numbers always come
out to be whole numbers, but fractional numbers of this measured entropy
are also possible.

20.1.33 – We also have two alternate definitions of Υ∗.

20.1.34 – The first accepts two arguments for separate concepts 𝑎 and 𝑏 and
returns the amount of information required (i.e. how many permutations
[bits] need to change) to transform 𝑎 into a form that will match the structure
of 𝑏:

Υ∗(𝑎 ∣ 𝑏) ≡ − ∑
𝑝∈𝑔(𝑏)

log2 𝑚(𝑝, {𝑎, 𝑏})

20.1.35 – Notice that in this case the sum is over 𝑝 ∈ 𝑔(𝑏), as opposed
to 𝑝 ∈ 𝑔∪(𝐴) from §20.1.28. This also applies to the second alternative
definition that immediately follows.

20.1.36 – For example Υ∗(𝑦 ∣ 𝑥) = 3, because only the 5 permutations from
𝑔(𝑥) are considered, and the permutations ⟨𝑞⟩ and 𝑞 match.

20.1.37 – The second alternative definition of Υ∗ is a generalization of the
first; it accepts a set of concepts 𝐴 and another concept 𝑏.

20.1.38 – It returns the amount of information required to transform that
set of concepts into a form that matches 𝑏.

Υ∗(𝐴 ∣ 𝑏) ≡ ∑
𝑎∈𝐴

Υ∗(𝑎 ∣ 𝑏)

20.2 Operation W & Productivity
20.2.1 – We’d like a way to find an optimal abstraction of set of conceptual
structures. Let’s define the optimal abstraction of a set of concepts 𝐴 as a
new operation 𝑊 , withdraw.

𝑊({𝑎, …}) → 𝑏
𝑊(𝐴) ≡ arg max

𝑝∈𝑔∪(𝐴)
𝑄(𝑝 ∣ 𝐴)

20.2.2 – Here 𝑄(𝑝 ∣ 𝐴) indicates the productivity of the concept 𝑝 with
respect to the set of concepts 𝐴 (see §3.2.2).
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20.2.3 – 𝑊 finds the permutation that yields the greatest productivity.

20.2.4 – The naive version outlined in this chapter represents is a brute force
approach that will attempt to use every possible permutation 𝑝 ∈ 𝑔∪(𝐴) and
will return the argument 𝑝 that yields the maximum value of 𝑄(𝑝 ∣ 𝐴).
20.2.5 – In practice, we can be certain that the mind does not use a brute
force method of computing its abstractions, but instead uses some heuristics
to narrow the search.

20.2.6 – This turns abstraction of an optimization problem to find the most
efficient approximation of arg max

𝑝∈𝑔∪(𝐴)
𝑄(𝑝 ∣ 𝐴).

20.2.7 – In order to actually put this concept into use, we need a partly-
quantified approximation of 𝑄 that can be used to perform calculations.

20.2.8 – We can give a functional approximation of 𝑄(𝑝 ∣ 𝐴) by first priori-
tizing permutations that exist within all members of 𝐴, then by taking the
entropy of the set 𝐴 with respect to its abstraction 𝑎 with Υ∗

avg(𝐴 ∣ 𝑎), the
average entropy per permutation in the abstraction, and scaling it by the
ratio of the size of the permutation-wise representation of the abstraction
|𝑔(𝑎)| to the permutation-wise representation of the set |𝑔∪(𝐴)| represented
as 𝑘𝑠.

Υ∗
avg(𝐴 ∣ 𝑎) = Υ∗(𝐴 ∣ 𝑎)

|𝑔(𝑎)| ⋅ |𝐴|

𝑘𝑠 = |𝑔(𝑎)|
|𝑔∪(𝐴)|

𝑚all(𝑝, 𝐴) = {1 if 𝑚(𝑝, 𝐴) = 1
0 otherwise

�̃�(𝑝 ∣ 𝐴) ≡ 𝑚all(𝑝, 𝐴)
ℎ1

+ 𝑘𝑠 (1 − Υ∗
avg(𝐴 ∣ 𝑝))

ℎ0
∶ �̃�(𝑝 ∣ 𝐴) ≈ 𝑄(𝑝 ∣ 𝐴)

20.2.9 – Notice that 𝑚all returns 1 when abstraction 𝑎 is a permutation of
every concept in 𝐴 and 0 otherwise. Because this is placed over ℎ1, this
criteria holds ultimate precedence over any value of 𝑘𝑠(1−Υ∗

avg(𝐴∣𝑝))
ℎ0

.

20.2.10 – From our example above, we can find the abstraction of {𝑥, 𝑦} is
⟨𝑞⟩ as we might expect:

𝑊({⟨𝑞, 𝑟⟩, ⟨𝑞, 𝑠⟩}) → ⟨𝑞⟩



170 20 ABSTRACTION

Figure 45: Abstraction: Operation 𝑊 withdraws the abstraction ⟨𝑞⟩ as the
common substructure of 𝑥 and 𝑦 where the value of 𝑄(⟨𝑞⟩ ∣ {𝑥, 𝑦}) is the
maximum.

20.2.11 – Short of showing the totality of the calculations that lead to this
result, the salient ones in this case are:

𝑚all(⟨𝑞⟩, {𝑥, 𝑦}) = 1
𝑘𝑠 (1 − Υ∗

avg({𝑥, 𝑦} ∣ ⟨𝑞⟩)) = .25

20.3 Analogy
20.3.1 – Another important type of abstraction is analogy. Instead of com-
paring things directly, the comparison is made between the relation of one
set of things and another set of things.

A is to B as C is to D.

20.3.2 – In our framework we can represent this more directly. An analogy
between two sets of concepts holds when a conceptual machine that trans-
forms the first item of the first set to the second item of the first set is the
same machine that transforms the first item of the second set to the second
item of the second set.

20.3.3 – For example, if we were to say that concept 𝑎 is to 𝑏 as 𝑐 is to 𝑑,
what we are saying is that there is a machine ℳ𝑥 such that ℳ𝑥 acting on
𝑎 will produce 𝑏, and the same ℳ𝑥 acting on 𝑐 will produce 𝑑:

∃ℳ𝑥(𝑅(ℳ𝑥(𝑎)) → 𝑏) ∧ (𝑅(ℳ𝑥(𝑐)) → 𝑑)



21 Generalized Machines

“[I]n seeking better ways to learn, this can lead to silent growth
in which some better ways to learn may lead to better ways to
learn to learn.”

— Marvin Minsky

The mechanical structures used in the book can be abstracted, so that tech-
niques that were used in past machines can be put to use toward building
generalized machines: machines that build other machines.

171
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21.1 Machine Generalization
21.1.1 – So far we’ve covered abstraction of conceptual structures via compar-
ison and reduction in redundancy, and abstraction in relationships between
structures in terms of analogy.

21.1.2 – The last type of abstraction we will examine is the abstraction of a
machine itself: a machine that creates other machines.

21.1.3 – In order to create these abstractions, we will put configurations of
universal conceptual machine ℳ𝑈 to use by representing machines struc-
turally. Then we can apply structural techniques to creating generalizations
of those machines.

21.1.4 – We will illustrate this process first by defining a conceptual ma-
chine for the arithmetical operation tetration, 𝐻4, which is the operation of
repeated exponentiation.

21.1.5 – With those configurations in place, we can compare them with those
of previous operations for common structure, and create another conceptual
machine that can be parameterized to produce sets of configurations for
ℳ𝑈—not only tetration, exponentiation, multiplication, and addition—but
for arbitrary hyperoperations, including pentation (𝐻5, i.e. repeated tetra-
tion), etc.

21.2 Tetration Machine
21.2.1 – As is our habit, we begin with our tetration machine specifier 𝜎4𝑐

:

𝜎4𝑐
(𝑜1, 𝑜2, 𝑟) ≡ ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«result4», 𝑟⟩⟩

∶ «result4» = ⟨«result», «4»⟩

21.2.2 – Notice that «result4» is equal to the composition of «result» and
«4». This is so that we can later create new result concepts for later hyper-
operations.

21.2.3 – And now we can begin defining our states. These will largely follow
the pattern from §13.4.

21.2.4 – First, we set «result4» to «1»:

𝑠0𝑐4
= 𝜎4𝑐

([ ], «not-0», [⋅])

𝑅(𝑠0𝑐4
) → 𝜎4𝑐

(𝑠0𝑐4
[op1], 𝑠0𝑐4

[op2], «1»)
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21.2.5 – Our second state takes «result4» to the power «op1» and decrements
«op2», so long as «op2» is greater than «0»:

𝑠1𝑐4
= 𝜎4𝑐

([ ], «not-0», [ ])

𝑅(𝑠1𝑐4
) → 𝜎4𝑐

(𝑠1𝑐4
[op1], 𝐻−1

0 (𝑠1𝑐4
[op2]), 𝐻3𝑐

(𝑠1𝑐4
[result4], 𝑠1𝑐4

[op1]))

21.2.6 – And finally we reset «op1» and «op2» to [ ], leaving only «result4»,
when «op2» is equal to «0».

𝑠2𝑐4
= 𝜎4𝑐

([ ], ̇«0», [ ])

𝑅(𝑠2𝑐4
) → 𝜎4𝑐

([ ], [ ], 𝑠2𝑐4
[result4])

21.2.7 – Below we have our machine specifier and operation:

ℳ4𝑐
(𝑜1, 𝑜2) ≡ 𝜎4𝑐

(𝑜1, 𝑜2, [ ])

𝐻4𝑐
(𝑜1, 𝑜2) ≡ 𝑋(𝑅(ℳ4𝑐

(𝑜1, 𝑜2)), «result4»)

21.2.8 – Here’s the execution table of ℳ4𝑐
(«2», «3»):

«op1» «op2» «result4»

ℳ4𝑐
(«2», «3») «2» «3» [ ]

𝑅(𝑠0𝑐4
) → 𝑠1𝑐4

«2» «3» «1»

𝑅(𝑠1𝑐4
) → 𝑠1𝑐4

«3» «3» «3»

𝑅(𝑠1𝑐4
) → 𝑠1𝑐4

«3» «2» «9»

𝑅(𝑠1𝑐4
) → 𝑠1𝑐4

«3» «1» «27»

𝑅(𝑠1𝑐4
) → 𝑠1𝑐4

«3» «0» «81»

𝑅(𝑠1𝑐4
) [ ] [ ] «81»

21.3 Generalizing Configurations
21.3.1 – We can now put our operation 𝑊 to use in finding the commonalities
between configuration structures, and using them to generalize machines
with a wider range of applications and greater productivity.
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21.3.2 – We will skip defining a total set of ℳ𝑈 configurations for ℳ3𝑐
and

ℳ4𝑐
. To illustrate the generalization power provided by operation 𝑊 we

will compare one configuration from each, the equivalents of 𝑠0𝑐3
and 𝑠0𝑐4

.

21.3.3 – First, let’s look at a configuration structure to represent 𝑠0𝑐3
(defined

in §13.4.3). Notice the use of 𝜎𝑐𝑈
from §19.2.6

𝑢0𝑐3
= 𝜎𝑐𝑈

(𝑝, 𝑜)
∶ 𝑝 = ⟨⟨«op1», [ ]⟩, ⟨«op2», [ ]⟩, ⟨⟨«result», «3»⟩, [⋅]⟩⟩

∶ 𝑜 = 𝐶3𝜎
(𝐶2𝜎

(«op1», 𝜌(«op2»)), 𝐶2𝜎
(«op2», 𝜌(«op2»)),

𝐶2𝜎
(𝐶2𝜎

(«result», «3»), «1»))

21.3.4 – Let’s compare with the extremely similar structure for 𝑠0𝑐4
from

§21.2.4:

𝑢0𝑐4
= 𝜎𝑐𝑈

(𝑝, 𝑜)
∶ 𝑝 = ⟨⟨«op1», [ ]⟩, ⟨«op2», [ ]⟩, ⟨⟨«result», «4»⟩, [⋅]⟩⟩

∶ 𝑜 = 𝐶3𝜎
(𝐶2𝜎

(«op1», 𝜌(«op2»)), 𝐶2𝜎
(«op2», 𝜌(«op2»)),

𝐶2𝜎
(𝐶2𝜎

(«result», «4»), «1»))

21.3.5 – If you look closely , you will see that the only difference between
these two structures are two occurrences of their operation index, «3» and
«4» respectively.

21.3.6 – Withdrawing an abstraction from this set of structures, we obtain:

𝑊({𝑢0𝑐3
, 𝑢0𝑐4

}) → 𝜎𝑐𝑈
(𝑝, 𝑜)

∶ 𝑝 = ⟨⟨«op1», [ ]⟩, ⟨«op2», [ ]⟩, ⟨⟨«result», ∅⟩, [⋅]⟩⟩
∶ 𝑜 = 𝐶3𝜎

(𝐶2𝜎
(«op1», 𝜌(«op2»)), 𝐶2𝜎

(«op2», 𝜌(«op2»)),
𝐶2𝜎

(𝐶2𝜎
(«result», ∅), «1»))

21.3.7 – This is the equivalent structure, but with the indices removed and
replaced with ∅ to represent that there is no concept in those places.

21.3.8 – We will not give a full account of how this structure is transformed
into the configuration in the next section in this work, but we leave the topic
with a plausible strategy for obtaining the configurations used in the next
section by mechanical processes.
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21.4 General Hyperoperation Machine
21.4.1 – Now it’s time to build a general hyperoperation machine ℳ𝐻𝑥

.

21.4.2 – This machine first invokes a second machine ℳ𝐻𝑐
to build a set of

configurations that can be executed by ℳ𝑈 to represent the 𝑥th hyperoper-
ation, then evaluates the configurations that it has constructed on-demand
with ℳ𝑈 to obtain results for arbitrary hyperoperational calculations.

21.4.3 – Notice as we work through how we can obtain nearly identical
structures to the configurations we build into ℳ𝑈 by generalizing from the
configurations used to evaluate those operations on ℳ𝑈 , including addition
and multiplication configurations outlined in §19.

21.4.4 – An important feature of future work will be better-defining these
geenralization processes so that there is a fully mechanical description of the
process to create a generalized machine from abstracted machine states.

21.4.5 – First, we will define the state specifier for ℳ𝐻𝑥
:

𝜎𝐻𝑥
(𝑜1, 𝑜2, 𝑥, 𝑐, 𝑟) ≡ ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨«opx», 𝑥⟩,

⟨«configurations», 𝑐⟩, ⟨«result», 𝑟⟩⟩

21.4.6 – Here the 𝑥 parameter is the operation index in 𝐻𝑥.

21.4.7 – We will also need a state specifier for ℳ𝐻𝑐
:

𝜎𝐻𝑐
(𝑥, 𝑖, 𝑠, 𝑐) ≡ ⟨⟨«opx», 𝑥⟩, 𝑐⟩, ⟨«index», 𝑖⟩,

⟨«state», 𝑠⟩, ⟨«configurations»⟩

Υ({«state1», «state2», «state3»}, «state»)

21.4.8 – And an associated machine specifier:

ℳ𝐻𝑐
(𝑥) ≡ 𝜎𝐻𝑐

(𝑥, ⟨⟩, «0», «state1»)

21.4.9 – Our first state for ℳ𝐻𝑥
, 𝑠0𝑥

, initializes ℳ𝐻𝑐
, and uses its result to

set its own «configurations»:

𝑠0𝑥
= 𝜎𝐻𝑥

([ ], [ ], «not-0», [⋅], [⋅])

𝑅(𝑠0𝑥
) → 𝜎𝐻𝑥

(𝑠0𝑥
[op1], 𝑠0𝑥

[op2], 𝑠0𝑥
[opx],

𝑋 (𝑅(ℳ𝐻𝑐
(𝑠0𝑥

[opx])), «configurations») , [ ])
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21.4.10 – This triggers ℳ𝐻𝑐
, which will build the «configurations» that will

be passed to ℳ𝑈 .

21.4.11 – In the coming machines it will be useful to define a specifier 𝜎res:

𝜎res(𝑥) = ⟨«result», 𝑥⟩

21.4.12 – In order to build ℳ𝐻𝑐
, we need to more specifiers that represent the

state of the emulated machine, which will execute the actual hyperoperation.
The first is a state specifier:

𝜎𝐻𝑜𝑝
(𝑜1, 𝑜2, 𝑥, 𝑟) ≡ ⟨⟨«op1», 𝑜1⟩, ⟨«op2», 𝑜2⟩, ⟨𝜎res(𝑥), 𝑟⟩⟩

21.4.13 – Notice that we are using an unusual pattern to construct the
«result» tag using 𝜎res(𝑥). This allows us to parameterize which result type
it is based on the index of the hyperoperation.

21.4.14 – We will also need a relation specifier for the emulated machine:

𝜔𝐻𝑜𝑝
(𝑜1, 𝑜2, 𝑥, 𝑟) ≡ 𝐶3𝜎

(𝐶2𝜎
(«op1», 𝑜1), 𝐶2𝜎

(«op2», 𝑜2),
𝐶2𝜎

(𝐶2𝜎
(«result», 𝑥), 𝑟))

21.4.15 – Let’s see the first state of ℳ𝐻𝑐
, which creates a configuration that

is the counterpart to the one seen in §21.2.4:

𝑠1𝐻3+
= 𝜎𝐻𝑐

(«3», [ ], [ ], «state1»)

𝑅(𝑠1𝐻3+
) → 𝜎𝐻𝑐

(𝑠1𝐻3+
[opx], 𝐻0(𝑠1𝐻3+

[index]), «state2»,
𝑇 (𝑠1𝐻3+

[configurations], 𝑠1𝐻3+
[index], 𝜎𝑐𝑈

(𝑝, 𝑜)))

∶ 𝑝 = 𝜎𝐻𝑜𝑝
([ ], [ ], 𝑠1𝐻3+

[opx], [⋅])
∶ 𝑜 = 𝜔𝐻𝑜𝑝

(𝜌(«op1»), 𝜌(«op2»), 𝑠1𝐻3+
[opx], «1»)

21.4.16 – Note that the 𝑇 invocation create a new «configuration» for any
hyperoperation with the index «3» or greater that sets its «result» to «1».

21.4.17 – The first step of the general case of hyperoperations is general to
all cases of 𝑥 ≥ 3, but has special cases for 𝑥 = 2 and 𝑥 = 1 below.
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21.4.18 – This rule creates a new «configuration» in 𝑠1𝐻3+
[configurations] at

index 𝑠1𝐻3+
[index].

21.4.19 – The pattern that determines when this rule applies is
𝜎𝐻𝑜𝑝

([ ], [ ], 𝑠1𝐻3+
[opx], [⋅]).

21.4.20 – 𝜔𝐻𝑜𝑝
(𝜌(«op1»), 𝜌(«op2»), 𝑠1𝐻3+

[opx], «1») indicates the opera-
tion of the configuration. In this case, that equates to initializing the hy-
peroperation’s result to «1» (which is the first step for all cases where the
hyperoperation index is 3 or greater).

21.4.21 – 𝐻0(𝑠1𝐻3+
[index]) increments the index so that the next configura-

tion will be written after this one.

21.4.22 – And finally, «state2» defines the next state of our configuration-
building machine ℳ𝐻𝑐

.

21.4.23 – One thing to pay attention to is when we use 𝑠1𝐻3+
[opx] to “stati-

cally” embed the index of the hyperoperation we’re currently defining. This
is because we iteratively define the largest-indexed hyperoperation, then the
next-largest, all the way down to 𝐻1.

21.4.24 – In the next state, very similar to the above but only when 𝑥 = 2—
as in multiplication—the initial value of «result» is «0».

21.4.25 – This configuration is nearly identical to its counterpart in §19.11.5:

𝑠1𝐻2
= 𝜎𝐻𝑐

(«2», [ ], [ ], «state1»)

𝑅(𝑠1𝐻2
) → 𝜎𝐻𝑐

(𝑠1𝐻2
[opx], 𝐻0(𝑠1𝐻2

[index]), «state2»,
𝑇 (𝑠1𝐻2

[configurations], 𝑠1𝐻2
[index], 𝜎𝑐𝑈

(𝑝, 𝑜)))

∶ 𝑝 = 𝜎𝐻𝑜𝑝
([ ], [ ], 𝑠1𝐻2

[opx], [⋅])
∶ 𝑜 = 𝜔𝐻𝑜𝑝

(𝜌(«op1»), 𝜌(«op2»), 𝑠1𝐻2
[opx], «0»))

21.4.26 – And in the case that 𝑥 = 1, as in addition, its initial value is «op1»,
the analogue of §19.11.11:
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𝑠1𝐻1
= 𝜎𝐻𝑐

(«1», [ ], [ ], «state1»)

𝑅(𝑠1𝐻1
) → 𝜎𝐻𝑐

(𝑠1𝐻1
[opx], 𝐻0(𝑠1𝐻1

[index]), «state2»,
𝑇 (𝑠1𝐻1

[configurations], 𝑠1𝐻1
[index], 𝜎𝑐𝑈

(𝑝, 𝑜)))

∶ 𝑝 = 𝜎𝐻𝑜𝑝
([ ], [ ], 𝑠1𝐻1

[opx], [⋅])
∶ 𝑜 = 𝜔𝐻𝑜𝑝

(𝜌(«op1»), 𝜌(«op2»), 𝑠1𝐻1
[opx], 𝜌(«op1»))

21.4.27 – Now we need to create a configuration that will execute the re-
peated operation.

21.4.28 – In order to make our work more legible, we’ll define a special
version of 𝜌, 𝜌res, which allows us to create parameterized «result» objects
based on the needed hyperoperation index:

𝜌res(𝑥) ≡ 𝜌(⟨«result», 𝑥⟩)

21.4.29 – And an operation specifier 𝐻𝑥𝜎
:

𝐻𝑥𝜎
(𝑥) ≡ 𝑋𝜎(𝑅𝜎(𝑟), 𝜎res(𝐻−1

0 (𝑥)))

∶ 𝑟 = 𝜔𝐻𝑜𝑝
(𝜌(«op1»), 𝜌res(𝑥), 𝐻−1

0 (𝑥), [ ])

21.4.30 – This operation specifier evaluates the next-indexed hyperoperation
from the passed 𝑥.

21.4.31 – Notice that 𝜌res(𝑥) gets the next-indexed «result», e.g. «result3»
in the case of that 𝑥 = 4.

21.4.32 – Below is the state in the general case that 𝑥 ≥ 2. (𝑥 = 1 needs to
explicitly invoke 𝐻0.) This is the analogue of the configuration defined in
§19.11.7 for multiplication:
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𝑠2𝐻2+
= 𝜎𝐻𝑐

(«2», [ ], [ ], «state2»)

𝑅(𝑠2𝐻2+
) → 𝜎𝐻𝑐

(𝑠2𝐻2+
[opx], 𝐻0(𝑠2𝐻2+

[index]), «state3»,
𝑇 (𝑠2𝐻2+

[configurations], 𝑠2𝐻2+
[index], 𝜎𝑐𝑈

(𝑝, 𝑜)))

∶ 𝑝 = 𝜎𝐻𝑜𝑝
([ ], [ ], 𝑠2𝐻2+

[opx], [⋅])
∶ 𝑜 = 𝜔𝐻𝑜𝑝

(𝜌(«op1»), 𝐻−1
0𝜎

(𝜌(«op2»)), 𝑠2𝐻2+
[opx], 𝐻𝑥𝜎

(𝑠2𝐻2+
[opx]))

21.4.33 – Be aware of the usage of 𝐻𝑥𝜎
, defined above, to evaluate the next-

indexed hyperoperation.

21.4.34 – That operation specifier allows us to recursively call down to the
next hyperoperation and retrieve its results.

21.4.35 – Now we construct the configuration for the special case that 𝑥 = 1,
i.e. addition.

21.4.36 – In this case we do not call the same machine recursively, but instead
utilize 𝐻0 directly via 𝐻0𝜎

:

𝑠2𝐻1
= 𝜎𝐻𝑐

( ̇«1», [ ], [ ], «state2»)

𝑅(𝑠2𝐻1
) → 𝜎𝐻𝑐

(𝑠2𝐻1
[opx], 𝐻0(𝑠2𝐻1

[index]), «state3»,
𝑇 (𝑠2𝐻1

[configurations], 𝑠2𝐻1
[index], 𝜎𝑐𝑈

(𝑝, 𝑜)))

∶ 𝑝 = 𝜎𝐻𝑜𝑝
([ ], [ ], 𝑠2𝐻1

[opx], [⋅])
∶ 𝑜 = 𝜔𝐻𝑜𝑝

(𝜌(«op1»), 𝐻−1
0𝜎

(𝜌(«op2»)), 𝑠2𝐻1
[opx], 𝐻0𝜎

(𝜌res(𝑠2𝐻1
[opx])))

21.4.37 – In ℳ𝐻𝑐
’s final state, we construct for each hyperoperation’s

“cleanup state,” in which we set «op1» and «op2» to [ ], we decrement
«opx» to generate the state for the next hoperoperation, and we set the
configuration-generating machine’s state back to «state1» to renew the
cycle.
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Figure 46: 𝑀𝐻𝑥
State Graph: The initial state of 𝑀𝐻𝑥

, 𝑠0𝐻𝑥
, sends the input

to 𝑀𝐻𝑐
. 𝑀𝐻𝑐

constructs a set of «configurations» that can be evaluated by
ℳ𝑈 . 𝑠1𝐻𝑥

sets the «structure» of ℳ𝑈 given the input of 𝑀𝐻𝑥
and evaluates

ℳ𝑈 with the set of «configurations» generated by 𝑀𝐻𝑐
.

Figure 47: 𝑀𝐻𝑐
State Graph: Each 𝑠1 creates the initial state of the machine

for the current hyperoperation, each 𝑠2 creates the state that repeats the
next hyperoperation, and the shared 𝑠3 will cycle back to the next 𝑠1 if the
hyperoperation index is less than «1» or will end otherwise. Notice that
𝑠1 has two special cases for how to initialize the machine, 𝑠2 has only one
special case for when 𝐻1 needs to invoke 𝐻0, and 𝑠3 has no special cases.
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𝑠3𝐻1+
= 𝜎𝐻𝑐

(«not-0», [ ], [ ], «state3»)

𝑅(𝑠3𝐻1+
) → 𝜎𝐻𝑐

(𝑠3𝐻1+
[opx], 𝐻0(𝑠3𝐻1+

[index]), «state1»,
𝑇 (𝑠3𝐻1+

[configurations], 𝑠3𝐻1+
[index], 𝜎𝑐𝑈

(𝑝, 𝑜)))

∶ 𝑝 = 𝜎𝐻𝑜𝑝
([ ], ̇«0», 𝑠3𝐻1+

[opx], [ ])
∶ 𝑜 = 𝜔𝐻𝑜𝑝

([ ], [ ], 𝑠3𝐻1+
[opx], 𝜌res(𝑠3𝐻1+

[opx]))

21.4.38 – ℳ𝐻𝑐
is now complete. The final remaining step is to add a state

to ℳ𝐻𝑥
that uses the configurations that have been set by ℳ𝐻𝑐

to invoke
ℳ𝑈 and execute the hyperoperation we constructed:

𝑠1𝑥
= 𝜎𝐻𝑥

([ ], [ ], [ ], [ ], [⋅])

𝑅(𝑠1𝑥
) → 𝜎𝐻𝑥

([ ], [ ], [ ], [ ], 𝑋(𝑚[«result»], 𝜎res(𝑠1𝑥
[opx])))

∶ 𝑚 = ℳ𝑈(𝑜, 𝑠1𝑥
[configurations])

∶ 𝑜 = 𝜎𝐻𝑜𝑝
(𝑠1𝑥

[op1], 𝑠1𝑥
[op2], 𝑠1𝑥

[opx], [ ])

21.4.39 – Finally, we define our operation 𝐻𝑥:

𝐻𝑥(𝑜1, 𝑜2, 𝑥) ≡ 𝑋(𝑅(ℳ𝐻𝑥
(𝑜1, 𝑜2, 𝑥)), «result»)

21.4.40 – And now we can see the results of our generalized hyperoperation
machine:

𝐻𝑥(«1», «6», «1») = «7»
𝐻𝑥(«4», «3», «2») = «12»
𝐻𝑥(«2», «3», «3») = «8»

𝐻𝑥(«2», «4», «4») = «65536»
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22 Toward Intelligence

“I do really believe that creativity is computational.”

—Yoshua Bengio

This concluding outline examines how our work thus far can be pushed
forward, and sets a direction for future inquiry into mechanical “intelligence.”

183
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22.1 What Is Intelligence?
22.1.1 – Intelligence is the ability to create and execute arbitrary cognitive
mechanisms as required for the purpose of meeting new tasks and challenges.

22.1.2 – In order to instantiate anything deserving of the label “intelligence,”
we will need to make progress along multiple courses.

22.1.3 – To conclude our inquiry, we’ll outline three specific areas as parts of
a program for future research, and finally illustrate a direction for we may
connect them to create intelligent machines.

22.2 Perceptual Operations
22.2.1 – The machines we’ve constructed in this book—being primarily ab-
stract mathematical and computational in nature—have not demanded that
we have any thorough formulation of outside circumstances.

22.2.2 – In most cases, an intelligent machine adapts to the needs of its
present situation in its environment. That adaptation requires environmen-
tal input—in our case in the form of perceptions.

22.2.3 – Though we gave broad definitions of 𝐼 and 𝐺—in §5.4.2 and §7.2.3,
respectively—there is much detail to be added in the case of an actionable
mechanical system.

22.2.4 – In the case of 𝐺, the primary challenge is to determine a suitable
representation of the perception in the terms of manifestations, likely in
terms of some sparse structure.

22.2.5 – For 𝐼 , we then need to take that sparse representation and build from
it a complex conceptual structure that models the machine’s environment.

22.2.6 – This environment need not necessarily be physical. We could imag-
ine machines that live in virtual worlds—which may be created to have some
emulated properties of our world, but may also live in an entirely abstract
environments of information, mathematical structures, etc.

22.2.7 – This conceptual model is critical to determining how the machine
acts on its environment.

22.3 Goals
22.3.1 – In order to determine how it will act on the environment, the ma-
chine needs to formulate a goal—an internal model of a desired end state of
the environment.
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22.3.2 – I think we can be fairly certain that this model will also be in the
form of a conceptual structure.

22.3.3 – So the optimal machine will turn perceptions into a model of the
world. It will then use that model to formulate its version of a desired alter-
nate state of the model, and then determine an efficient set of actions that
will lead to the highest expectation in terms of matching future perceptions
to its model of the desired state.

22.3.4 – In the most autonomous systems, goals cause the production of
sub-goals, which can have their own sub-goals, and so-on.

22.3.5 – Let’s take the task of putting a ball through a hoop as an example.
At minimum, the mind needs the following to decide on a course of action:

1. A conceptual model of the ball;
2. A conceptual model of the hoop;
3. A conceptual model of the ball on one side of the hoop;
4. A conceptual model of the ball on the other side of the hoop (i.e. the

goal);
5. Some machine that goes about modeling the transformation from the

first state to the second one, in different iterations, if needed; and
6. Some mechanism that determines whether one transformation is supe-

rior to the others.

22.3.6 – Once we have a properly formulated way to model the environment
of the machine in terms of conceptual structures, we will have made a large
step towards fitting the machine with goals that match our own.

22.4 Abstraction Optimization
22.4.1 – The recursion of goals created by the system ultimately has its roots
in the system of abstraction it uses.

22.4.2 – For example, if a machine was set with a goal of performing cal-
culations of hyperoperations it was given examples of, the machine would
start by formulating individual machines for special cases, and an ideal ma-
chine would take those separate special-case machines and abstract away
the states of ℳ𝐻𝑥

, defined in §21.

22.4.3 – The formulations of Υ∗ (and 𝑊 , by its usage of Υ∗) in this book
are ad hoc and extremely computationally inefficient. This is a rich area for
future study, especially in producing heuristics and more efficient algorithms
for determining good abstractions.
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22.5 Discrete & Non-Discrete Approaches
22.5.1 – Though the present landscape of machine learning is dominated by
the recent success of deep learning techniques, I believe that ultimately the
combination of discrete (structural and symbolic), network, statistical, and
Bayesian approaches ones will yield the most productive results.

22.5.2 – A specific area that I believe is ripe for research is the emergence
of statistical phenomena out of discrete ones and vice versa.

22.5.3 – Even deep learning algorithms, which are ostensibly non-discrete in
nature, are implemented on discrete machines.

22.5.4 – I suspect that conceptual machines built with stochastic state tran-
sitions, mentioned in passing in §12, might have properties that begin to
resemble some features of these other non-discrete approaches. These fea-
tures may be particularly useful in the “lower” levels of the mechanical
hierarchy, especially with respect to where neural nets have seen the most
success in applications today: in the analysis of primary “perceptual” input,
specifically in auditory and visual pattern recognition.

22.5.5 – In the other directions, some progress in the formulation of discrete
representations in non-discrete systems would result in huge breakthroughs.

22.5.6 – The notions of synthesis between discrete and non-discrete ap-
proaches to machine intelligence will need to find more attention.

22.6 An Intelligent Machine
22.6.1 – An intelligent machine requires a way of translating perceptions into
conceptual structures; it needs the ability to manipulate that structure; it
must be able to compare it to another structure that represents some desired
state (i.e. a goal); and it must be able to produce an action which is likely
to lead to the desired state, given its input.

22.6.2 – Our model of an intelligent machine ℳ𝑖 is given with an experience
𝜒, which is interpreted into a conceptual structure with operation 𝐼 .

22.6.3 – The workings of 𝐼 must take into account 𝑘, a set of the exist-
ing conceptual structures that constitute the machine’s knowledge, and the
resulting structure of 𝐼(𝜒 ∣ 𝑘) can then be added back into 𝑘.

22.6.4 – 𝐺(𝜒 ∣ 𝑘) may also have its results added to 𝑘.

22.6.5 – The result of 𝐼(𝜒 ∣ 𝑘) is 𝑒, the machine’s model of its environment:

𝐼(𝜒 ∣ 𝑘) → 𝑒
𝑘′ = 𝑘 ∪ {𝑒, 𝐺(𝜒 ∣ 𝑘)}
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Figure 48: ℳ𝑖 State Graph: This graph shows the interaction of each ma-
chine and operation within ℳ𝑖 from input 𝜒 to output 𝑐.

22.6.6 – We assume the machine ℳ𝑖 to have a submachine, ℳ𝑔, which takes
a model of an environment and formulates a goal 𝑔:

𝑅(ℳ𝑔(𝑒)) → 𝑔

22.6.7 – A machine ℳ𝑎 accepts 𝑒 and 𝑔 as input, and produces a set of
«configurations» 𝑐 that can be executed by ℳ𝑈 to produce 𝑔 as the «result»:

𝑅(ℳ𝑎(𝑒, 𝑔)) → 𝑐

22.6.8 – Plausible implementations of ℳ𝑎 could use 𝑊 to withdraw a com-
mon structure from 𝑒 and 𝑔, applying heuristics and stochastic exploration
to find solutions to the conversion of 𝑒 to 𝑔, given that common structure.

22.6.9 – The solution 𝑐 represents the action required to reach state 𝑔 from
𝑒; 𝑐 is the result of ℳ𝑖, along with the updated state of knowledge 𝑘′.

22.6.10 – ℳ𝑎 may construct intermediate goals, and may invoke itself with
those intermediate goals to build the set of configurations 𝑐.

22.6.11 – From the highest level:

𝑅(ℳ𝑖(𝜒 ∣ 𝑘)) → ⟨⟨«configurations», 𝑐⟩, ⟨«knowledge», 𝑘′⟩⟩

22.6.12 – Finally, to enact the solution:

𝑈(𝑒, 𝑐) → 𝑔
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